Femtosecond Dynamics of Semiconductor Nonlinearities: Theory and Experiments

  • S. W. Koch
  • N. Peyghambarian
  • M. Lindberg
  • B. D. Fluegel
Part of the NATO ASI Series book series (NSSB, volume 194)


Ultrafast transmission changes in semiconductors are computed and measured for different pump-probe conditions. The optical Stark effect of excitons and continuum states is observed for nonresonant femtosecond excitation. Differential transmission oscillations are seen as precursers of the Stark effect. They occur also as precursers of spectral hole burning when the excitation pulse is tuned into the region of resonant interband transitions. The experimental results agree well with calculations using the generalized semiconductor Bloch equations. The theory shows that the commonly used adiabatic approximation is correct only for pulses which are longer than the coherence decay time. For shorter times the semiconductor response is dominated by the coherent interaction of the pulses with the medium polarization.


Pump Pulse Probe Pulse Stark Shift Oscillatory Structure Transmission Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    A. Von Lehmen, D. S. Chemla, G. E. Zinker, and G. P. Heritage, Opt. Lett. 11, 609 (1986).ADSCrossRefGoogle Scholar
  3. 3.
    B. Fluegel, N. Peyghambarian, G. Olbright, M. Lindberg, S. W. Koch, M. Joffre, D. Hulin, A. Migus, and A. Antonetti, Phys. Rev. Lett. 59, 2588 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    J. P. Sokoloff, M. Joffre, B. Fluegel, D. Hulin, M. Lindberg, S. W. Koch, A. Migus, A. Antonetti, and N. Peyghambarian, Phys. Rev. B38, October 15 (1988).Google Scholar
  5. 5.
    S. W. Koch, N. Peyghambarian, and M. Lindberg, J. Phys. C: Solid State Phys. 21 (review article, 1988)Google Scholar
  6. 6.
    N. Peyghambarian, B. Fluegel, S.W. Koch, J. Sokoloff, M. Lindberg, M. Joffre, D. Hulin, A. Migus, and A. Antonetti, Proceedings of the Sixth International Conference on Ultrafast Phenomena, Mt. Hiei, Kyoto/Japan, July 12-15 (1988).Google Scholar
  7. 7.
    S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    S. Schmitt-Rink, D. S. Chemla, and H. Haug, Phys. Rev. B 37, 941 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    R. Zimmerman, Phys. stat. sol. b146, 371 (1988).ADSGoogle Scholar
  10. 10.
    C. Ell, J. F. Müller, K. El Sayed, and H. Haug, submitted for publication; C. Ell, L. Banyai, J. F. Müller, K. El Sayed, and H. Haug, physica status solidi (b) to be published.Google Scholar
  11. 11.
    M. Combescot and R. Combescot, Phys. Rev. Lett. 61, 117 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    M. Lindberg and S.W. Koch, Phys. Rev. B38, 3342 (1988)ADSGoogle Scholar
  13. 13.
    see, e.g., R.G. Brewer, in Frontiers of Laser Spectroscopy, Proceedings of the Les Houches Summer School XXVII, eds. R. Balian, S. Haroche and S. Liberman (North Holland, Amsterdam, 1977), p. 341Google Scholar
  14. 14.
    M. Lindberg and S.W. Koch, Phys. Rev. B38, October 15 (1988)Google Scholar
  15. 15.
    M. Lindberg and S. W. Koch, Journ. Opt. Soc. Am. B5, 139 (1988)ADSGoogle Scholar
  16. 16.
    W. H. Knox, D.S. Chemla, D.A.B. Miller, J.B. Stark, and S. Schmitt-Rink, post-dealine paper PD-19, XIV International Conference on Quantum Electronics IQEC’88, Tokyo/Japan, July 18-21, 1988Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • S. W. Koch
    • 1
  • N. Peyghambarian
    • 1
  • M. Lindberg
    • 1
  • B. D. Fluegel
    • 1
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA

Personalised recommendations