Optical Stark Shift in Quantum Wells

  • D. Hulin
  • M. Joffre
  • A. Migus
  • A. Antonetti
Part of the NATO ASI Series book series (NSSB, volume 194)

Abstract

Excitonic resonances are at the origin of large optical nonlineari-ties, especially in Multiple Quantum Well Structures (MQWS) where moreover they are present even at room temperature. These features make MQWS very attractive both from a fundamental point of view and for applications to optical devices. The recently reported optical Stark effect1,2,3,4 has raised a wide current of interest since it corresponds to the coupling of electronic states with photons of energy below the absorption edge. The use of a pump wavelength in the transparency region of the MQWS offers great promise for optical devices since it implies an ultrafast response time and almost the absence of heat dissipation. It was already known for atoms that the virtual absorption and re-emission of non-resonant photons leads to a shift of the atomic levels. In solids such a situation is also encountered for transitions like excitons. The small magnitude of the corresponding energy shift with respect to typical excitonic transitions linewidth requires the use of lasers with quite high peak power. This is obtained by using very short laser pulses (10−13 s) which in the same time provide direct information on the dynamics of this optical Stark effect(OSE).

Keywords

Coherence GaAs Tempo Zucker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink and H.M. Morkoç, Phys. Rev. Lett. 56, 2748 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    A. von Lehmen, D.S. Chemla, J.E. Zucker and J.P. Heritage, Opt. Lett. 11, 609 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    K. Tai, J. Hegarty and W.T. Tsang,Appl. Phys. Lett, 51, 152 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    D. Fröhlich, R. Wille, W. Schlapp and G. Weimann, Phys. Rev. Lett. 59, 1748 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    M. Joffre, D. Hulin, A. Migus, A. Mysyrowicz and A. Antonetti, Revue Phys. Appl. 22, 1705 (1987)CrossRefGoogle Scholar
  6. 6.
    P.C. Becker, R.L. Fork, C.H. Brito Cruz, J.P. Gordon and C.V. Shank, Phys. Rev. Lett. 60, 2462 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    S. Schmitt-Rink and D.S. Chemla, Phys. Rev. Lett. 57 2752 (1986)ADSCrossRefGoogle Scholar
  8. 8.
    M. Combescot and R. Combescot, Phys. Rev. Lett. 61, 117 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoç, H.M. Gibbs and N. Peyghambarian, Phys. Rev. B33, 4389 (1986)ADSGoogle Scholar
  10. 10.
    W.H. Knox, J.B. Stark, D.S. Chemla, D.A.B. Miller and S. Schmitt-Rink, Ultrafast Phenomena VI, KYOTO 1988, Postdeadline paper FA3Google Scholar
  11. 11.
    B. Fluegel, N. Pheyghambarian, G. Olbright, M. Lindberg, S.W. Koch, M. Joffre, D. Hulin, A. Migus and A. Antonetti, Phys. Rev. Lett. 22, 2588 (1987)ADSCrossRefGoogle Scholar
  12. 12.
    M. Joffre, D. Hulin, A. Migus, A. Antonetti, C. Benoit à la Guillaume, N. Peyghambarian, M. Lindberg and S.W. Koch, Opt. Lett. 13, 276 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    C.H. Brito Cruz, J.P. Gordon, P.C. Becker, R.L. Fork and C.V. Shank, IEEE J. Quantum Electron. QE24, 261 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    M. Joffre, D. Hulin, A. Migus and A. Antonetti, “Dynamics of the optical Stark effect in semiconductors”, J. Mod. Opt., in pressGoogle Scholar
  15. 15.
    D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoç, H.M. Gibbs and N. Peyghambarian, Appl. Phys. Lett. 49, 749 (1986); D. Hulin, A. Antonetti, M. Joffre, A. Migus, A. Mysyrowicz, N. Peyghambarian and H.M. Gibbs, Revue Phys. Appl. 22, 1269 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. Hulin
    • 2
  • M. Joffre
    • 2
  • A. Migus
    • 1
  • A. Antonetti
    • 1
  1. 1.Laboratoire d’Optique AppliquéeENSTA-Ecole PolytechniquePalaiseauFrance
  2. 2.Groupe de Physique des Solides de l’Ecole Normale SupérieureUniversité Paris VIIParisFrance

Personalised recommendations