Advertisement

Cubic Nonlinear Optical Effects in Conjugated 1D II-Electron Systems

  • F. Kajzar
Part of the NATO ASI Series book series (NSSB, volume 194)

Abstract

The key problem in getting fast, efficient and cheap nonlinear optical devices is finding the proper material. Multiple quantum wells (MQW) [1] represent a class of interesting highly nonlinear optical material with a principal drawback — the response time. Although the rise times are quite fast (of the order of a few ps) the decay time is an order of magnitude slower. The large nonlinearity of these materials is due to the large polarizability of excitons confined in two dimensions. An alternative and/or challenging material to MQW’s are one dimensional conjugated π electron systems. In these materials the interaction between π electrons of neighbouring carbon atoms along the chain of polymer leads to their delocalization and consequently to an enhanced hyperpolarizability.

Keywords

Nonlinear Optical Property Multiple Quantum Well Third Harmonic Generation Refractive Index Variation Harmonic Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    See, e.g., Optical Properties of Narrow-Gap Low-Dimensional Structures, C.M. Sotomayor Torres, J.C. Portal, J.C. Maan, and R.A. Stractling eds., NATO ASI Series B, Vol. 152, Plenum Press, New York (1987)Google Scholar
  2. [2]
    G.A. Vinogradov, Russian Chem. Reviews 53, 77 (1984); Polydiacetylenes, Synthesis and Electronic Structure, R.R. Chance and D. Bloor eds., NATO ASI Series E, Vol. 102, Martinus Nijhof Publ., Dordrecht (1985)Google Scholar
  3. [3]
    F. Kajzar and J. Messier, Cubic Effects in Polydiacetylene Solutions and Films, in: Nonlinear Optical Properties of Organic Molecules and Crystals, D.S. Chemla and J. Zyss eds., Academic Press, Vol. 2, p. 51 (1987)Google Scholar
  4. [4]
    G.M. Carter, Y.J. Chen, M.F. Rubner, DJ. Sandman, M.K. Thakur, and S.K. Tripathy, in: Nonlinear Optical Properties of Organic Molecules and Crystals, D.S. Chemla and J. Zyss eds., Academic Press, Vol. 2, p. 85 (1987)Google Scholar
  5. [5]
    P.N. Prasad, Nonlinear Optical Interactions in Polymer Thin Films, in Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, SPIE Proceedings, Vol. 62, p. 120 (19)Google Scholar
  6. [6]
    F. Kajzar, S. Etemad, G.L. Baker, and J. Messier, Synth. Metals 17, 563 (1987)CrossRefGoogle Scholar
  7. [7]
    A.J. Heeger, D. Moses, and M. Sinclair, Synth. Metals 17, 343 (1987)CrossRefGoogle Scholar
  8. [8]
    S. Etemad, G.L. Baker, D. Jaye, F. Kajzar, and J. Messier, Proceed. SPIE, Vol. 682, p 44 (19)Google Scholar
  9. [9]
    D. Fichou, F. Gamier, F. Charra, F. Kajzar, and J. Messier, Proceedings of the Conf. Organic Materials for Nonlinear Optics, Oxford (1988)Google Scholar
  10. [10]
    P.N. Prasad, Proceedings of NATO Workshop, Sophia Antipolis (1988)Google Scholar
  11. [11]
    C. Grossman, J.R. Heflin, K.Y. Wong, O. Zamani-Khamiri, and A.F. Garito, Proceedings of NATO ARW Nice Sophia Antipolis (1988)Google Scholar
  12. [12]
    G. Wegner, Z. Naturforsch. 24 B, 824 (1969)Google Scholar
  13. [13]
    D. Day and J.B. Lando, Macromol. 13, 1483 (1980)ADSCrossRefGoogle Scholar
  14. [14]
    F. Kajzar, L. Rothberg, S. Etemad, P.A. Collet, D. Grec, A. Boudet, and T. Jedju, Thin Sol. Films 160, 373 (1988)ADSCrossRefGoogle Scholar
  15. [15]
    M. Thakur and S. Meyler, Macromol. 18, 2341 (1985)ADSCrossRefGoogle Scholar
  16. [16]
    J. Le Moigne, A. Thierry, P.A. Collet, F. Kajzar, and J. Messier, J. Chem. Phys. 88, 6647 (1988)ADSCrossRefGoogle Scholar
  17. [17]
    J. Le Moigne, A. Thierry, P.A. Collet, F. Kajzar, and J. Messier, Proc. SPIE Conf. Molecular and Polymeric Optoelectronic Materials: Fundamentals and Applications, San Diego (1988)Google Scholar
  18. [18]
    S. Tomaru, K. Kubodera, T. Kurihara, and S. Zembetsu, J. Appl. Sc. Japan 26, L 1657 (1987)Google Scholar
  19. [19]
    J. Berrehar, C. Lapersonne-Meyer, and M. Schott, Appl. Phys. Letters 48, 630 (1986)ADSCrossRefGoogle Scholar
  20. [20]
    J.F. Ward, Rev. Mod. Phys. 37, 1 (1965)ADSCrossRefGoogle Scholar
  21. [21]
    B.I. Greene, J. Orenstein, R.R. Millard, and L.R. Williams, Phys. Rev. Letters 58, 2750 (1987)ADSCrossRefGoogle Scholar
  22. [22]
    F. Kajzar, L. Rothberg, S. Etemad, P.A. Collet, D. Grec, A. Boudet, and T. Jedju, Opt. Commun. 66, 55 (1988)ADSCrossRefGoogle Scholar
  23. [23]
    B.I. Greene, J.F. Müller, J. Orenstein, D.H. Rapkine, S. Schmitt-Rink, and M. Thakur, Phys. Rev. letters 61, 325 (1988)ADSCrossRefGoogle Scholar
  24. [24]
    B.I. Greene, J. Orenstein, S. Schmitt-Rink, and M. Thakur, Excitonic Optical Nonlinearities in Polydiacetylene: the Mechanismus, this issueGoogle Scholar
  25. [25]
    F. Charra and J.M. Nunzi, Proceed. of the Conf. Organic Materials for Nonlinear Optics, Oxford (1988)Google Scholar
  26. [26]
    J.M. Nunzi and F. Charra, Proceed. of NATO ARW Nice Sophia Antipolis (1988)Google Scholar
  27. [27]
    M. Cardona, in: Optical Properties of Solids, Sol. Nudelman and S.S. Mitra eds., Plenum Press, New York (1969), p. 137Google Scholar
  28. [28]
    F. Kajzar and J. Messier, Polymer J. 19, 275 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • F. Kajzar
    • 1
  1. 1.CEA — CEN SACLAYIRDI/D.LETI/DEIN/LPEMGif sur, YvetteFrance

Personalised recommendations