Molecular Targets for Selective Antiviral Chemotherapy

  • Erik De Clercq
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 143)


Only few antiviral substances have been licensed and/or are widely available for medical use. These include, at present, amantadine and rimantadine for the prophylaxis and early treatment of influenza A virus infections, idoxuridine, trifluridine, vidarabine and acyclovir for the topical treatment of herpetic keratitis, acyclovir for the systemic (intravenous or peroral) treatment of herpes simplex virus (HSV) and varicella-zoster virus (VZV) infections, vidarabine for the systemic (intravenous) treatment of herpetic encephalitis (although acyclovir is superior to vidarabine in the treatment of herpetic encephalitis), ribavirin for the topical (aerosol) treatment of respiratory syncytial virus infection in infants, and retrovir (azidothymidine) for the systemic (intravenous or peroral) treatment of AIDS and AIDS-related complex (ARC).1


Human Immunodeficiency Virus Herpes Simplex Virus Antiviral Activity Nucleoside Analogue Equine Infectious Anemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. De Clercq (ed.), “Clinical Use of Antiviral Drugs” (Series: Developments in Medical Virology, Y. Becker, ed.), Martinus Nijhoff Publishing, Kluwer Academic Publishers, Norwell, Massachusetts, USA, in press (1987).Google Scholar
  2. 2.
    A.J. Hay, A.J. Wolstenholme, J.J. Skehel, and M.H. Smith, The molecular basis of the specific anti-influenza action of amantadine, EMBO J. 4:3021 (1985).PubMedGoogle Scholar
  3. 3.
    T.J. Smith, M.J. Kremer, M. Luo, G. Vriend, E. Arnold, G. Kamer, M.G. Rossmann, M.A. McKinlay, G.D. Diana, and M.J. Otto, The site of attachment in human rhinovirus 14 for antiviral agents that inhibit un-coating, Science 233:1286 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    B.E. Gilbert, and V. Knight, Biochemistry and clinical applications of ribavirin, Antimicrob. Agents Chemother. 30:201 (1986).PubMedGoogle Scholar
  5. 5.
    E. De Clercq, and R.T. Walker, Synthesis and antiviral properties of 5-vinylpyrimidine nucleoside analogs, Pharmac. Ther. 26:1 (1984).CrossRefGoogle Scholar
  6. 6.
    E. De Clercq, and R.T. Walker, Chemotherapeutic agents for herpesvirus infections, in: “Progress in Medicinal Chemistry”, vol. 23, G.P. Ellis, and G.B. West, eds., Elsevier Sci. Publ., Amsterdam, p. 187 (1986).CrossRefGoogle Scholar
  7. 7.
    C.K. Chu, and S.J. Cutler, Chemistry and antiviral activities of acyclonucleosides, J. Heterocyclic Chem. 23:289 (1986).CrossRefGoogle Scholar
  8. 8.
    E.-C. Mar, Y.-C. Cheng, and E.-S. Huang, Effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine on human cytomegalovirus replication in vitro, Antimicrob. Agents Chemother. 24:518 (1983).PubMedGoogle Scholar
  9. 9.
    M.J. Tocci, T.J. Livelli, H.C. Perry, C.S. Crumpacker, and A.K. Field, Effects of the nucleoside analog 2′-nor-2′-deoxyguanosine on human cy­tomegalovirus replication, Antimicrob. Agents Chemother. 25:247 (1984).PubMedGoogle Scholar
  10. 10.
    V.R. Freitas, D.F. Smee, M. Chernow, R. Boehme, and T.R. Matthews, Activity of 9-(1,3-dihydroxy-2-propoxymethyl)guanine compared with that of acyclovir against human, monkey, and rodent cytomegaloviruses, Antimicrob. Agents Chemother. 28:240 (1985).PubMedGoogle Scholar
  11. 11.
    K.K. Biron, J.A. Fyfe, S.C. Stanat, L.K. Leslie, J.B. Sorrell, C.U. Lambe, and D.M. Coen, A human cytomegalovirus mutant resistant to the nucleoside analog 9-{[2-hydroxy-l-(hydroxymethyl)ethoxy]methyl}guanine (BW B759U) induces reduced levels of BW B759U triphosphate, Proc. Natl. Acad. Sci. USA 83:8769 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    E. De Clercq, Towards a selective chemotherapy of virus infections. Development of bromovinyldeoxyuridine as a highly potent and selective antiherpetic drug, Verh. K. Acad. Geneeskd. Belg. 48:261 (1986).PubMedGoogle Scholar
  13. 13.
    N.K. Ayisi, E. De Clercq, R.A. Wall, H. Hughes, and S.L. Sacks, Metabolic fate of (E)-5-(2-bromovinyl)-2,-deoxyuridine in herpes simplex virus- and mock-infected cells, Antimicrob. Agents Chemother. 26:762 (1984).PubMedGoogle Scholar
  14. 14.
    S. Kit, H. Ichimura, and E. De Clercq, Phosphorylation of nucleoside analogs by equine herpesvirus type 1 pyrimidine deoxyribonucleoside kinase, Antiviral Res. 7:53 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Kit, H. Ichimura, and E. De Clercq, Differential metabolism of (E)-5-(2-iodovinyl)-2′-deoxyuridine (IVDU) by equine herpesvirus type 1-and herpes simplex virus-infected cells, Antiviral Res. 8:41 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    E. De Clercq, Biochemical aspects of the selective antiherpes activity of nucleoside analogues, Biochem. Pharmacol. 33:2159 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    D. Derse, Y.-C. Cheng, P.A. Furman, M.H. St. Clair, and G.B. Elion, Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate, J. Biol. Chem. 256: 11447 (1981).PubMedGoogle Scholar
  18. 18.
    K. Stenberg, A. Larsson, and R. Datema, Metabolism and mode of action of (R)-9-(3,4-dihydroxybutyl)guanine in herpes simplex virus-infected Vero cells, J. Biol. Chem. 261: 2134 (1986).PubMedGoogle Scholar
  19. 19.
    J. Descamps, R.K. Sehgal, E. De Clercq, and H.S. Allaudeen, Inhibitory effect of E-5-(2-bromovinyl)-1–β-D-arabinofuranosyluracil on herpes simplex virus replication and DNA synthesis. J. Virol. 43:332 (1982).PubMedGoogle Scholar
  20. 20.
    E. De Clercq, and R. Bernaerts, Specific phosphorylation of 5-ethyl-2′-deoxyuridine by herpes simplex virus-infected cells and incorporation into viral DNA, J. Biol. Chem., in press (1987).Google Scholar
  21. 21.
    E. De Clercq, R. Bernaerts, J. Balzarini, P. Herdewijn, and A. Verbruggen, Metabolism of the carbocyclic analogue of (E)-5-(2-iodovi-nyl)-2′-deoxyuridine in herpes simplex virus-infected cells, J. Biol. Chem. 260:10621 (1985).PubMedGoogle Scholar
  22. 22.
    J. Sági, E. De Clercq, A. Szemzö, A.H. Csárnyi, T. Kovács, and L. Ötvös, Incorporation of the carbocyclic analogue of (E)-5-(2-bromovinyl)-2′-deoxyuridine 5′-triphosphate into a synthetic DNA, Biochem. Biophys. Res. Commun., in press (1987).Google Scholar
  23. 23.
    Y.-c. Cheng, S.P. Grill, G.E. Dutschman, K. Nakayama, and K.F. Bastow, Metabolism of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, a new antiherpes virus compound, in herpes simplex virus-infected cells, J. Biol. Chem. 258:12460 (1983).PubMedGoogle Scholar
  24. 24.
    R. Bernaerts, A. Verbruggen, and E. De Clercq, Mechanism of antiviral action of 5-substituted 2′-deoxyuridines: (E)-5-(2-iodovinyl)-2′-deo-xyuridine (IVDU) as compared to its carbocyclic analogue (C-IVDU), in “Frontiers in Microbiology. From Antibiotics to AIDS” (E. De Clercq, ed.), Martinus Nijhoff Publishers, Dordrecht, p. 289 (1987).Google Scholar
  25. 25.
    E. De Clercq, J. Descamps, G.-F. Huang, and P.F. Torrence, 5-Nitro-2′-deoxyuridine and 5-nitro-2′-deoxyuridine 5′-monophosphate: antiviral activity and inhibition of thymidylate synthetase in vivo, Mol. Pharmacol. 14:422 (1978).PubMedGoogle Scholar
  26. 26.
    E. De Clercq, J. Balzarini, P.F. Torrence, M.P. Mertes, C.L. Schmidt, D. Shugar, P.J. Barr, A.S. Jones, G. Verhelst, and R.T. Walker, Thymidylate synthetase as target enzyme for the inhibitory activity of 5-substituted 2′-deoxyuridines on mouse leukemia L1210 cell growth, Mol. Pharmacol. 19:321 (1981).PubMedGoogle Scholar
  27. 27.
    J. Balzarini, E. De Clercq, D. Ayusawa, and T. Seno, Thymidylate synthetase-deficient mouse FM3A mammary carcinoma cell line as a tool for studying the thymidine salvage pathway and the incorporation of thymi­dine analogues into host cell DNA, Biochem. J. 217:245 (1984).PubMedGoogle Scholar
  28. 28.
    J. Balzarini, E. De Clercq, D. Ayusawa, and T. Seno, Thymidylate syn-thetase-positive and -negative murine mammary FM3A carcinoma cells as a useful system for detecting thymidylate synthetase inhibitors, FEBS Lett. 173:227 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Balzarini, and E. De Clercq, Strategies for the measurement of the inhibitory effects of thymidine analogs on the activity of thymidylate synthase in intact murine leukemia L1210 cells, Biochim. Biophys. Acta 785:36 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Balzarini, E. De Clercq, M.P. Mertes, D. Shugar, and P.F. Torrence, 5-Substituted 2′-deoxyuridines: correlation between inhibition of tumor cell growth and inhibition of thymidine kinase and thymidylate synthetase, Biochem. Pharmacol. 31:3673 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    E. De Clercq, J. Bères, and W.G. Bentrude, Potent activity of 5-fluoro-2′-deoxyuridine and related compounds against thymidine kinase-deficient (TK) herpes simplex virus: targeted at thymidylate synthase, Mol. Pharmacol. 32:286 (1987).PubMedGoogle Scholar
  32. 32.
    E. De Clercq, A. Holý, I. Rosenberg, T. Sakuma, J. Balzarini, and P.C. Maudgal, A novel selective broad-spectrum anti-DNA virus agent, Nature 323:464 (1986).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Baba, S. Mori, S. Shigeta, and E. De Clercq, Selective inhibitory effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 2′-nor-cyclic GMP on adenovirus replication in vitro, Antimicrob. Agents Chemother. 31:337 (1987).PubMedGoogle Scholar
  34. 34.
    A.D.M.E. Osterhaus, J. Groen, and E. De Clercq, Selective inhibitory effects of (S)-9-(3-hydroxy-2-phosphonyl-methoxypropyl)adenine and 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)-5-iodouracil on seal herpesvirus (phocid herpesvirus 1) infection in vitro, Antiviral Res. 7:221 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    C. Gil-Fernandez, and E. De Clercq, Comparative efficacy of broad-spectrum antiviral agents as inhibitors of African swine fever virus replication in vitro, Antiviral Res 7:151 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Baba, K. Konno, S. Shigeta, and E. De Clercq, In vitro activity of (S)-9-(hydroxy-2-phosphonylmethoxypropyl)adenine against newly isolated clinical varicella-zoster virus strains, Eur. J. Clin. Microbiol.: 6:158 (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    P.C. Maudgal, E. De Clercq, and P. Huyghe, Efficacy of (S)-HPMPA against thymidine kinase-deficient herpes simplex virus-keratitis, Invest. Ophthalmol. Vis. Sci. 28:243 (1987).PubMedGoogle Scholar
  38. 38.
    I. Votruba, R. Bernaerts, T. Sakuma, E. De Clercq, A. Merta, I. Rosenberg, and A. Holy, Intracellular phosphorylation of broad-spectrum anti-DNA virus agent (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and inhibition of viral DNA synthesis, Mol. Pharmacol., in press (1987).Google Scholar
  39. 39.
    E. De Clercq, and J.A. Montgomery, Broad-spectrum antiviral activity of the carbocyclic analog of 3-deazaadenosine, Antiviral Res. 3:17 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    E. De Clercq, and A. Holý, Alkyl esters of 3-adenin-9-yl-2-hydroxypropanoic acid: a new class of broad-spectrum antiviral agents, J. Med. Chem. 28:282 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    E. De Clercq, Antiviral and antimetabolic activities of neplanocins, Antimicrob. Agents Chemother. 28:84 (1985).PubMedGoogle Scholar
  42. 42.
    R.T. Borchardt, B.T. Keller, and U. Patel-Thombre, Neplanocin A. A potent inhibitor of S-adenosylhomocysteine hydrolase and of vaccinia vi­rus multiplication in mouse L929 cells, J. Biol. Chem. 259:4353 (1984).PubMedGoogle Scholar
  43. 43.
    R.I. Glazer, K.D. Hartman, M.C. Knode, M.M. Richard, P.K. Chiang, C.K.H. Tseng, and V.E. Marquez, 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60, Biochem. Biophys. Res. Commun. 135:688 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    R.T. Borchardt, S-Adenosyl-L-methionine-dependent macromolecule methyltransferases: potential targets for the design of chemotherapeutic agents, J. Med. Chem. 23:347 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    E. De Clercq, S-Adenosylhomocysteine hydrolase inhibitors as broad-spectrum antiviral agents, Biochem. Pharmacol. 16:2567 (1987).CrossRefGoogle Scholar
  46. 46.
    M. Cools, E. De Clercq, and J.C. Drach, Role of adenosine kinase in the biological (antiviral and anticellular) activities of adenosine analogues, Nucleosides & Nucleotides 6:423 (1987).CrossRefGoogle Scholar
  47. 47.
    E. De Clercq, and M.J. Robins, Xylotubercidin against herpes simplex virus type 2 in mice, Antimicrob. Agents Chemother. 30:719 (1986).PubMedGoogle Scholar
  48. 48.
    E. De Clercq, J. Balzarini, D. Madej, F. Hansske, and M.J. Robins, Nucleic acid related compounds. 51. Synthesis and biological properties of sugar-modified analogues of the nucleoside antibiotics tubercidin, toyocamycin, sangivamycin and formycin, J. Med. Chem. 30:481 (1987).PubMedCrossRefGoogle Scholar
  49. 49.
    E. De Clercq, and M. Cools, Antiviral potency of adenosine analogues: correlation with inhibition of S-adenosylhomocysteine hydrolase, Biochem. Biophys. Res. Commun. 129:306 (1985).PubMedCrossRefGoogle Scholar
  50. 50.
    E. De Clercq, Chemotherapeutic approaches to the treatment of the acquired immune deficiency syndrome (AIDS), J. Med. Chem. 29:1561 (1986).PubMedCrossRefGoogle Scholar
  51. 51.
    E. De Clercq, New selective antiviral agents active against the AIDS virus, Trends in Pharmacological Sciences (TIPS) 8:339 (1987).CrossRefGoogle Scholar
  52. 52.
    H. Mitsuya, K.J. Weinhold, P.A. Furman, M.H. St. Clair, S. Nusinoff Lehman, R.C. Gallo, D. Bolognesi, D.W. Barry, and S. Broder, 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA 82:7096 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    H. Mitsuya, and S. Broder, Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2′,3′-dideoxynucleosides, Proc. Natl. Acad. Sci. USA 83:1911 (1986).PubMedCrossRefGoogle Scholar
  54. 54.
    J. Balzarini, R. Pauwels, P. Herdewijn, E. De Clercq, D.A. Cooney, G.-J. Kang, M. Dalai, D.G. Johns, and S. Broder, Potent and selective anti-HTLV-III/LAV activity of 2′,3′-dideoxycytidinene, the 2′,3′-unsaturated derivative of 2′,3′-dideoxycytidine, Biochem. Biophys. Res. Commun. 140:735 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    T.-S. Lin, R.F. Schinazi, M.S. Chen, E. Kinney-Thomas, and W.H. Prusoff, Antiviral activity of 2′,3′-dideoxycytidin-2′-ene (2′,3′-dideoxy-2′,3′-didehydrocytidine) against human immunodeficiency virus in vitro, Biochem. Pharmacol. 36:311 (1987).PubMedCrossRefGoogle Scholar
  56. 56.
    M. Baba, R. Pauwels, P. Herdewijn, E. De Clercq, J. Desmyter, and M. Vandeputte, Both 2′,3′-dideoxythymidine and its 2′,3′-unsaturated derivative (2′,3′-dideoxythymidinene) are potent and selective inhibitors of human immunodeficiency virus replication in vitro, Biochem. Biophys. Res. Commun. 142:128 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    J. Balzarini, R. Pauwels, M. Baba, M.J. Robins, R. Zou, P. Herdewijn, and E. De Clercq, The 2′,3′-dideoxyriboside of 2,6-diaminopurine selectively inhibits human immunodeficiency virus (HIV) replication in vitro, Biochem. Biophys. Res. Commun. 145:269 (1987).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Baba, R. Pauwels, J. Balzarini, P. Herdewijn, and E. De Clercq, Selective inhibition of human immunodeficiency virus (HIV) by 3′-azido-2′,3′-dideoxyguanosine in vitro, Biochem. Biophys. Res. Commun. 145:1080 (1987).PubMedCrossRefGoogle Scholar
  59. 59.
    E. De Clercq, J. Balzarini, J. Descamps, and F. Eckstein, Antiviral, antimetabolic and antineoplastic activities of 2′- or 3′-amino orazido-substituted deoxyribonucleosides, Biochem. Pharmacol. 29:1849 (1980).PubMedCrossRefGoogle Scholar
  60. 60.
    J. Balzarini, G.-J. Kang, M. Dalai, P. Herdewijn, E. De Clercq, S. Broder, and D. G. Johns, The anti-HTLV-III (anti-HIV) and cytotoxic activity of 2′,3′-didehydro-2′,3′-dideoxyribonucleosides. A comparison with their parental 2′,3′-dideoxyribonucleosides, Mol. Pharmacol. 32:162 (1987).PubMedGoogle Scholar
  61. 61.
    M.A. Waqar, M.J. Evans, K.F. Manly, R.G. Hughes, and J.A. Huberman, Effects of 2′,3′-dideoxynucleosides on mammalian cells and viruses, J. Cell. Physiol. 121:402 (1984).PubMedCrossRefGoogle Scholar
  62. 62.
    J. Balzarini, R. Pauwels, M. Baba, P. Herdewijn, E. De Clercq, S. Broder, and D.G. Johns, The in vitro and in vivo anti-retrovirus activity, and intracellular metabolism of 3′-azido-2′,3′-dideoxythymidine and 2′,3′-dideoxycytidine are highly dependent on the cell species, Biochem. Pharmacol., in press (1987).Google Scholar
  63. 63.
    P.A. Furman, J.A. Fyfe, M.H. St. Clair, K. Weinhold, J.L. Rideout, G.A. Freeman, S. Nusinoff Lehrman, D.P. Bolognesi, S. Broder, H. Mitsuya, and D.W. Barry, Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase, Proc. Natl. Acad. Sci. USA 83: 8333 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Erik De Clercq
    • 1
  1. 1.Rega Institute for Medical ResearchKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations