Epstein-Barr Virus

  • Joseph S. Pagano
Part of the NATO ASI Series book series (NSSA, volume 143)


Infection with human herpesviruses poses a problem for treatment with antiviral drugs, stemming from the latent infection that viruses produce. There are now drugs, in use or experimental, that are effective against replication of herpesviruses in vitro and in vivo. None of these drugs affects latent herpetic infection. Until recently we have lacked even a theoretical approach to treatment of latency. The Epstein-Barr virus is ideal for consideration of the different issues presented by herpetic infection and how to study the approaches to treatment in vitro. Well characterized in vitro systems for EBV replication provide excellent models for testing and study of drugs active against productive infection. In addition the only cellular model for herpesviral latency is provided by EBV. In cells latently infected with EBV we have known or at least inferred that different DNA polymerases are utilized in productive versus latent infection, with only the virus-specified polymerase being susceptible to the action of any of the known antiviral drugs.


Long Terminal Repeat Nasopharyngeal Carcinoma Latent Infection Raji Cell Early Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Pagano, J.S. A perspective on treatment of Epstein-Barr virus infection states. Epstein-Barr virus and associated diseases. In Proceedings of the First International Symposium on Epstein-Barr Virus and Associated Malignant Diseases. Loutraki, Greece. (P.H. Levine, D.V. Ablashi, G.R. Pearson, and S.D. Kottaridis, eds.). Martinus Nijhoff Publishers, 619–630, 1985.CrossRefGoogle Scholar
  2. Pagano, J.S. Epithelial cell interactions of the Epstein-Barr virus. In Concepts in Viral Pathogenesis, chap. 42, 307–314. (A Notkins, M. Oldstone, eds.) Springer-Verlag, 1984.CrossRefGoogle Scholar
  3. Pagano, J.S. The Epstein-Barr virus plasmid. In Extrachromosomal DNA, [ISBN (0–12-198780–9)], Academic Press, Inc., New York, 1979, 235–248.Google Scholar
  4. Pagano, J.S. and J.-C. Lin. Cellular tranformation by the herpesviruses and antiviral drugs. (S. Goff, ed.). For Pharmacology and Therapeutics. XXVIII, 135–161, Pergamon Press, Ltd., 1985.Google Scholar
  5. Pagano, J.S. and S.M. Lemon. The Herpesviruses. In Infectious Diseases and Medical Microbiology, 2nd Edition. (A. Braude, ed.) W.B. Saunders Co. 470–477, 1986.Google Scholar
  6. Raab-Traub, N. and J.S. Pagano. Hybridization of viral nucleic acids: Newer methods on solid media and in solution. In Methods in Virology, VII. (K. Maramorosch, H. Koprowski, eds.). Academic Press, New York. 1–38, 1984.Google Scholar
  7. Sixbey, J.W. and J.S. Pagano. New perspectives on the Epstein-Barr virus in the pathogenesis of lymphoproliferative disorders. In Current Clinical Topics in Infectious Diseases, Vol. 5. J. Remington and M. Schwartz, ed., 146–176, McGraw Hill, New York, 1984.Google Scholar
  8. The Epstein-Barr Virus (M.A. Epstein and B.G. Achong, eds.), Springer-Verlag, Inc., New York, 1979.Google Scholar

Literature Cited

  1. 1.
    Epstein, M.A., B.G. Achong, and Y.M. Barr. Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1:702–703, 1964.PubMedCrossRefGoogle Scholar
  2. 2.
    Nonoyama, M. and J.S. Pagano. Separation of Epstein-Barr virus DNA from large chromosomal DNA in non-virus producing cells. Nature 238:169–171, 1972.CrossRefGoogle Scholar
  3. 3.
    Adams, A. and T. Lindahl. EBV genomes with properties of circular DNA molecules in carrier cells. Proc. Natl. Acad. Sci. USA 72:1477–1481, 1975.PubMedCrossRefGoogle Scholar
  4. 4.
    Sixbey, J.W. and J.S. Pagano. Epstein-Barr virus transformation of human B-lymphocytes despite inhibition of viral polymerase. J. Virol., 52:299–301, 1985.Google Scholar
  5. 5.
    Matsuo, T., M. Heller, L. Petti, E. O’Shiro, and E. Kieff. Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226:1322–1325, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Pope, J., M. Home, and W. Scott. Transformation of fetal human leukocytes in vitro by filtrates of a human leukemic cell line containing herpes like virus. Int. J. Cancer 3:857–866, 1968.PubMedCrossRefGoogle Scholar
  7. 7.
    Klein, G., J. Zenthen, P. Terasaki, R. Billing, R. Hoing, M. Jondal, A. Westman, and G. Clements. Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV-coinfected sublines. Int. J. Cancer 18:639–652, 1976.PubMedCrossRefGoogle Scholar
  8. 8.
    Weigle, R. and G. Miller. Major EB virus-specific cytoplasmic transcripts in a cellular clone of the HR-1 Burkitt lymphoma line during latency and after induction of viral replicative cycle by phorbol esters. Virology 125:287–298, 1983.CrossRefGoogle Scholar
  9. 9.
    Feighny, R.J., B.E. Henry II, and J.S. Pagano. Epstein-Barr virus polypeptides: Effect of inhibition of viral DNA replication on their synthesis. J. Virol. 37:61–71, 1981.PubMedGoogle Scholar
  10. 10.
    Hummel, M. and E. Kieff. Epstein-Barr virus RNA. VIII. Viral RNA in permissively infected B95–8 cells. J. Virol. 43:262–272, 1982.PubMedGoogle Scholar
  11. 11.
    King, W., A. Thomas-Powell, N. Raab-Traub, M. Hawke, and E. Kieff. Epstein-Barr virus RNA. VI. Viral RNA in restringently and abortively infected Raji cells. J. Virol. 38:649–660, 1981.PubMedGoogle Scholar
  12. 12.
    Rosa, M.D., E. Gottlieb, M.R. Lerner, and J.A. Steitz. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAU. Mol. Cell. Biol. 1:785–796, 1981.PubMedGoogle Scholar
  13. 13.
    Hennessy, K., M. Heller, V. Van Santen, and E. Kieff. Simple repeat array in Epstein-Barr virus DNA encodes part of the Epstein-Barr nuclear antigen. Science 220:1396–1398, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Yates, J.L., N. Warren, and B. Sugden. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313:812–815, 1985.PubMedCrossRefGoogle Scholar
  15. 15.
    Sugden, B., K. Marsh, and J. Yates. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol. Cell. Biol. 5:410–413, 1985.PubMedGoogle Scholar
  16. 16.
    Pesano, R.L. and J.S. Pagano. Herpesvirus papio contains a plasmid origin of replication that acts in cis interspecies with an Epstein-Barr virus transacting function. J. Virol., 60:1159–1162, 1986.PubMedGoogle Scholar
  17. 17.
    Milman, G. and E.S. Hwang. Epstein-Barr virus nuclear antigen forms a complex that binds with high concentration dependence to a single DNA-binding site. J. Virol. 61:465–471, 1987PubMedGoogle Scholar
  18. 18.
    Hennessy, K. and E. Kieff. A second nuclear protein is encoded by the Epstein-Barr virus in latent infection. Science 227:1238–1239, 1985.PubMedCrossRefGoogle Scholar
  19. 19.
    Rabson, M., L. Gradoville, L. Heston, and G. Miller. Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. J. Virol. 44:834–844, 1982.Google Scholar
  20. 20.
    Hennessy, K., S. Fennewald, M. Hummel, T. Cole, and E. Kieff. A third viral nuclear protein in lympohoblasts immortalized by Epstein-Barr virus. Proc. Natl. Acad. Sci USA, 82:5944–5948, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Hennessy, K., S. Fennewald, M. Hummel, T. Cole, and E. Kieff. A membrane protein encoded by Epstein-Barr virus in latent growth transforming infection. Proc. Natl. Acad. Sci. USA 81:7202–7211, 1984.CrossRefGoogle Scholar
  22. 22.
    Wang, D., D. Liebowitz, and E. Kieff. An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840, 1985.PubMedCrossRefGoogle Scholar
  23. 22a.
    Nonoyama, M. and J.S. Pagano. Homology between Epstein-Barr virus DNA and viral DNA from Burkitt’s lymphoma and nasopharyngeal carcinoma determined by DNA-DNA reassociation kinetics. Nature 242:44–47, 1973.PubMedCrossRefGoogle Scholar
  24. 23.
    Croce, C.M., M. Shandler, J. Martinis, L. Cicurel, G.G. D’Ancona, T.W. Dolby, and H. Koprowski. Chromosomal location of the human immunoglobulin heavy chain genes. Proc. Natl. Acad. Sci. USA 76:3416–3419, 1979.PubMedCrossRefGoogle Scholar
  25. 24.
    Dalla-Favera, R., M. Bregni, J. Erikson, D. Patterson, R.C. Gallo, and C. Croce. Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl. Acad. Sci. USA 79:7824–7827, 1982.PubMedCrossRefGoogle Scholar
  26. 25.
    Pagano, J.S., C.S. Huang, and P. Klein. Absence of Epstein-Barr viral DNA in Burkitt’s lymphoma. New Engl. J. Med. 289:1395–1399, 1973.PubMedCrossRefGoogle Scholar
  27. 26.
    de The, G. Epidemiology of Epstein-Barr virus and associated diseases in man. The Herpesviruses, B. Roizman (ed.), 1982.Google Scholar
  28. 27.
    Henle, G. and W. Henle. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma. Int. J. Cancer 17:1–7, 1976.PubMedCrossRefGoogle Scholar
  29. 28.
    Desgranges, C., H. Wolf, G. de The’, K. Shanmugaratnam, R. Ellouz, N. Cammoun, G. Klein, and H. zur Hausen. Nasopharyngeal carcinoma X. Presence of Epstein-Barr virus genomes in epithelial cells of tumors from high and medium risk areas. Int. J. Cancer 16:7–15, 1975.PubMedCrossRefGoogle Scholar
  30. 29.
    Pagano, J.S., C.-H. Huang, G. Klein, G. de The, K. Shanmugaratnam, and C.-S. Yang. Homology of Epstein-Barr virus DNA in nasopharyngeal carcinomas from Kenya, Taiwan, Singapore, and Tunis. In Proceedings of the Second International Symposium on Oncogenesis and Herpesviruses, Nuremburg, Germany. IARC, Lyon, France, 1975. Publication No. 11, Part II, 179–190.Google Scholar
  31. 29a.
    Nonoyama, M., C.-H. Huang, J.S. Pagano, G. Klein, and S. Singh. DNA of Epstein-Barr virus detected in tissue of Burkitt’s lymphoma and nasopharyngeal carcinoma. Proc. Natl. Acad. Sci. USA 70:3265–3268, 1973.PubMedCrossRefGoogle Scholar
  32. 30.
    Raab-Traub, N. and K. Flynn. The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation. Cell 47:883–889, 1986.PubMedCrossRefGoogle Scholar
  33. 31.
    Raab-Traub, N., R. Hood, C.S. Yang, B. Henry, and J.S. Pagano, Epstein-Barr virus transcription in nasopharyngeal carcinoma. J. Virol. 48:580–590, 1983.PubMedGoogle Scholar
  34. 32.
    Greenspan, J.S., D. Greenspan, E.T. Lennette, D.I. Abrams, M.A. Conant, V. Petersen, and U.K. Freese. Replication of Epstein-Barr virus within the epithelial cells of oral “hairy” leukoplakia, an AIDS-associated lesion. N. Engl. J. Med., 313:1564–1571, 1985.PubMedCrossRefGoogle Scholar
  35. 33.
    Kenney, S., J. Kamine, D. Markovitz, R. Fenrick, and J.S. Pagano. An EBV Immediate-Early gene product transactivates gene expression from the Human Immunodeficiency Virus (HIV) Long Terminal Repeat (LTR). Submitted, 1987.Google Scholar
  36. 34.
    Summers, W.C. and G. Klein. Inhibition of Epstein-Barr Virus DNA synthesis and late gene expression by phosphonoacetic acid. J. Virol. 18:151–155, 1976.PubMedGoogle Scholar
  37. 35.
    Datta, A.K. and R.E. Hood. Mechanisms of inhibition of Epstein-Barr virus replication by phophonoformic acid. Virology 114:52–59, 1981.PubMedCrossRefGoogle Scholar
  38. 36.
    Benz, W.C., P.J. Siegel, and J. Baer. Effects of adenine arabinoside on lymphocytes infected with Epstein-Barr virus. J. Virol. 27:475–482, 1978.PubMedGoogle Scholar
  39. 37.
    Colby, B.M., J.E. Shaw, G.B. Elion, and J.S. Pagano. Effect of Acyclovir [9-(2-hydroxyethoxymethyl)guanine] on Epstein-Barr virus DNA replication. J. Virol. 34:560–568, 1980.PubMedGoogle Scholar
  40. 38.
    Lin, J.-C, M.C. Smith, and J.S. Pagano. Prolonged inhibitory effects of 9-(1,3-Dihydroxy-2-propoxymethyl)guanine against replication of Epstein-Barr virus. J. Virol. 50:50–55, 1984.PubMedGoogle Scholar
  41. 39.
    Lin, J.-C, D.J. Nelson, C.U. Lambe, and J.S. Pagano. Effects of nucleoside analogs in inhibition of Epstein-Barr virus. Proc. International Virology Post-Congress Symposium on Pharmacological and Clinical Approaches to Herpesviruses and Virus Chemotherapy, Oiso, Japan. In press, 1985.Google Scholar
  42. 40.
    Lin, J.-C, M.C. Smith, E.I. Choi, E. De Clercq, A. Verbruggen, and J.S. Pagano. Effect of (E)-5-(2-Bromovinyl)-2′-deoxyuridine on replication of Epstein-Barr virus in human lymphoblastoid cell lines. Proceedings of the First International TNO Conference on Antiviral Research, Rotterdam, 30 April–3 May 1985, Elsevier, Amsterdam. Antiviral Research Suppl. 1 1:121–126, 1985.Google Scholar
  43. 41.
    Lin, J.-C, M.C. Smith, Y.C Cheng, and J.S. Pagano. Epstein-Barr virus: inhibition of replication by three new drugs. Science 221:578–579, 1983.PubMedCrossRefGoogle Scholar
  44. 42.
    Krenitsky, T.W., W.W. Hall, P. De Miranda, L.M. Beauchamp, H.J. Schaeffer, and P.D. Whiteman. 6-Deoxyacyclovir: A xanthine oxidase-activated prodrug of acyclovir. Proc. Natl. Acad. Sci. USA 81:3209–13, 1984.PubMedCrossRefGoogle Scholar
  45. 43.
    Spector, T., D.R. Averett, D.J. Nelson, C.U. Lambe, R.W. Morrison Jr., M.H. St. Clair, and P.A. Furman. Potentiation of antiherpetic activity of acyclovir by ribonucleotide reductase inhibition. Proc. Natl. Acad. Sci., 82:4254–4257, 1985.PubMedCrossRefGoogle Scholar
  46. 44.
    Furman, P.A., J.A. Fyfe, M. H. St. Clair, K. Weinhold, J.L. Rideout, G.A. Freeman, S.N. Lehrman, D.P. Bolognesi, S. Broder, H. Mitsuya, and D.W. Barry. Phosphorylation of 3′-azido-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc. Natl. Acad. Sci. USA, 83:8333–8337, 1986.PubMedCrossRefGoogle Scholar
  47. 45.
    Lin, J.-C, Z.-X. Zhang, M.C. Smith, K. Biron, and J.S. Pagano. Anti-human immunodeficiency virus agent 3′-Azido-3′-Deoxythymidine inhibits replication of Epstein-Barr virus. Submitted, 1987.Google Scholar
  48. 46.
    Elion, G.B., P.A. Furman, and J.A. Fyfe. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc. Natl. Acad. Sci. 74:5716–5720, 1977.PubMedCrossRefGoogle Scholar
  49. 47.
    Colby, B.M., P.A. Furman, J.E. Shaw, G.B. Elion, and J.S. Pagano. Phosphorylation of Acyclovir [9-(2-hydroxyethoxymethyl)guanine] in Epstein-Barr virus infected lymphoblastoid cell lines. J. Virol. 38:606–611, 1981.PubMedGoogle Scholar
  50. 48.
    Stinchcombe, T., and W. Clough. Epstein-Barr virus induces a unique pyrimidine deoxynulceotide kinase activity in superinfected and virus-producer B-cell lines. Biochem. 24:2027–2033, 1984.Google Scholar
  51. 49.
    Littler, E., J. Zeuthen, A. A. McBride, et al. Identification of an Epstein-Barr virus-coded thymidine kinase. The EMBO Journal 5:1959–1966, 1986.PubMedGoogle Scholar
  52. 50a.
    Chiou, J.-F., and Y.-C. Cheng. Interaction of Epstein-Barr virus DNA polymerase and 5′-triphosphates of several antiviral nucleoside analogs. Antimicr. Agents and Chemother. 27:416–418, 1985.Google Scholar
  53. 50b.
    Chiou, J.-F., J.K.K. Li, and Y.-C. Cheng. Demonstration of a stimulatory protein for virus-specified DNA polymerase in phorbol ester-treated Epstein-Barr virus-carrying cells. Proc. Natl. Acad. Sci. USA 82:5728–5731, 1985.PubMedCrossRefGoogle Scholar
  54. 50.
    Pagano, J.S. and A.K. Datta. Perspectives on interactions of Acyclovir with Epstein-Barr and other herpes viruses. Amer. J. of Med. (Acyclovir Symposium), 18–26, 1982.Google Scholar
  55. 51.
    Furman, P.A., M.H. St. Clair, and T. Spector. Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase. J. Biol. Chem. 259:9575–9579, 1984.PubMedGoogle Scholar
  56. 52.
    Lin, J.-C, E. DeClercq, and J.S. Pagano. Novel Acyclic adenosine analogs inhibit Epstein-Barr virus replication. Antimicrob. Agents and Chemother. In Press, 1987.Google Scholar
  57. 53.
    Lin, J.-C. D.J. Nelson, C.U. Lambe, and E. I. Choi. Metabolic activation of 9-(1,3-dihydroxy-2-propoxymethyl) guanine in human lymphoblastoid cell lines infected with Epstein-Barr virus. J. Virol. Submitted.Google Scholar
  58. 54.
    Pagano, J.S., J.W. Sixbey, and J.-C. Lin. Acyclovir and Epstein-Barr virus infection. J. Antimicrob. Chemother. 12:113–121, 1983.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Joseph S. Pagano
    • 1
  1. 1.Lineberger Cancer Research Center 237HUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations