Interferon as an Antiviral Agent

  • H. Schellekens
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 143)


Interactions that occur when an organism is infected with two or more different types of viruses simultaneously are called viral interference. In general, it manifests itself as tissue immunity. That means that a tissue infected with a virus is resistent to infection with other types of viruses. This phenomenon was already described in the beginning of this century, not only between antigenically related viruses such as yellow fever viruses (1) and herpes viruses (2), but also between antigenically unrelated viruses, such as yellow fever and vaccinia (3,4) on the one hand, and mumps and Western equine encephalomyelitis virus on the other hand (4). Especially the latter indicates that a non-immune mechanism was responsible. Although the most simple explanation for tissue immunity is a direct interaction between the different viruses, it has been assumed for a long time that a non-viral agent was responsible for this effect (3,5).


Herpes Zoster Human Interferon Yellow Fever Virus Tissue Immunity Interferon System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Hoskins, A protective action of neurotropic against viscerotropic yellow fever virus in Macaca rhesus, Am. J. Trop. Med. 15:675 (1935).Google Scholar
  2. 2.
    F. Magrassi, Studii sul’infezione e sul’immunita del virus erpetico, Z. Hyg. Infektionskr. 117:573 (1935).CrossRefGoogle Scholar
  3. 3.
    E.H. Lennette, and H. Koprowski, Interference between viruses in tissue culture, J. Exp. Med. 83:195 (1945).CrossRefGoogle Scholar
  4. 4.
    A. Vilches, and G.K. Hirst, Interference between neurotropic and other unrelated viruses, J. Immunol. 57:125 (1947).PubMedGoogle Scholar
  5. 5.
    W. Henle, Interference phenomena between animal viruses: a review, J. Immunol. 64:203 (1950).PubMedGoogle Scholar
  6. 6.
    A. Isaacs, and J. Lindenmann, Virus interference. I. The interferon, Proc. R. Soc. B147:258 (1957).Google Scholar
  7. 7.
    W.E. Stewart II, The Interferon System. Springer-Verlag, New York (1979).Google Scholar
  8. 8.
    Scientific Committee on Interferon, Experiments with interferon in man, Lancet i:505 (1965).Google Scholar
  9. 9.
    J.S. Youngner, and W.R Stinebring, Interferon production in chickens injected with Brucella abortus, Science 144:1022 (1964).PubMedCrossRefGoogle Scholar
  10. 10.
    A.K. Field, G.P. Lampson, A.A. Tytell, M.M. Nemes, and M.R. Hilleman, Inducers of interferon and host resistance, IV. Double-stranded replicative form RNA (MS2-RF-RNA) from E.coli infected with MS2 coliphage, Proc. Natl. Acad. Sci. USA 58:2102 (1967).PubMedCrossRefGoogle Scholar
  11. 11.
    H.B. Levy, W. London, D.A. Fuccillo, S. Baron, and J. Rice, Prophylactic control of simian hemorrhagic fever in monkeys by an interferon inducer, polyriboinosinic-polyribocytidylic acid-poly-1-lysine, J. Infect. Dis. 133:A256 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    I. Gresser, C. Bourali, J.P. Lévy, D. Fontaine-Brouty-Boyé, and M.T. Thomas, Increased survival in mice inoculated with tumor cells and treated with interferon preparations, Proc. Natl. Acad. Sci. USA 63:51 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    I. Gresser, and C. Bourali, Antitumor effects of interferon preparations in mice, J. Natl. Cancer Inst. 45:365 (1970).PubMedGoogle Scholar
  14. 14.
    K. Cantell, S. Hirvonen, H.-L. Kauppinen, and G. Myllylä. Production of interferon in human leukocytes from normal donors with the use of Sendai virus, in: “Interferons”. Part A. Methods in Enzymology, vol. 78, S. Pestka, ed., Academic Press, New York, p. 29 (1981).Google Scholar
  15. 15.
    K. Cantell, S. Hirvonen, and V. Koistinen, Partial purification of human leukocyte interferon on a large scale, in: “Interferons”. Part A. Methods in Enzymology, vol. 78, S. Pestka, ed., Academic Press, New York, p. 499 (1981).Google Scholar
  16. 16.
    N.B. Finter, and K.H. Fantes, The purity and safety of interferons prepared for clinical use: the case for lymphoblastoid interferon, in: “Interferon 2”, I. Gresser, ed., Academic Press, London, p. 65 (1980).Google Scholar
  17. 17.
    J. Vilcek, and E.A. Havell, Stabilization of interferon messenger RNA activity by treatment of cells with metabolic inhibitors and lowering of the incubation temperature, Proc. Natl. Acad. Sci. USA 70:3909 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Van Damme, and A. Billiau, Large-scale production of human fibroblast interferon, in: “Interferons”. Part A. Methods in Enzymology, vol. 78, S. Pestka, ed., Academic Press, New York, p. 101 (1981).Google Scholar
  19. 19.
    J. Treuner, and D. Niethammer, Studies with human fibroblast (β) interferon preparations in patients with cancer, in: “Interferon, vol. 4, In Vivo and Clinical Studies”, N.B. Finter, and R.K. Oldham, eds., Elsevier Science Publishers, Amsterdam, p. 281 (1985).Google Scholar
  20. 20.
    G. Allen, and K.H. Fantes, A family of structural genes for human lymphoblastoid (leukocyte-type) interferon. Nature 287:408 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    E. Knight Jr., M.W. Hunkapiller, B.D. Korant, R.W.F. Hardy, and L.E. Hood, Human fibroblast interferon: amino acid analysis and amino terminal amino acid sequence. Science 207:525 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Stein, C. Kenny, H.-J. Friesen, J. Shively, U. Del Valle, and S. Pestka, NH2 -terminal amino acid sequence of human fibroblast interferon, Proc. Natl. Acad. Sci. USA 77:5716 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Weissenbach, Y. Chernajovsky, M. Zeevi, L. Shulman, H. Soreq, U. Nir, D. Wallach, M. Perricaudet, P. Tiollais, and M. Revel, Two interferon mRNAs in human fibroblasts: in vitro translation and Escherichia coli cloning studies, Proc. Natl. Acad. Sci. USA 77:7152 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    J. Van Damme, M. De Ley, H. Claeys, A. Billiau, C. Vermylen, and P. De Somer, Interferon induced in human leukocytes by concanavalin A: isolation and characterization of γ- and β-type components, Eur. J. Immunol. 11:937 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    P.B. Sehgal, and A.D. Sagar, Heterogeneity of poly(I).poly(C)-induced human fibroblast interferon mRNA species, Nature 288:95 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Billiau, BSF-2 is not just a differentiation factor, Nature 324:415 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Taniguchi, N. Mantei, M. Schwarzstein, S. Nagata, M. Muramatsu, and C. Weissmann, Human leukocyte and fibroblast interferons are structurally related, Nature 285:547 (1980).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Evinger, M. Rubinstein, and S. Pestka, Antiproliferative and antiviral activities of human leukocyte interferons, Arch. Biochem. Biophys. 210:319 (1981).CrossRefGoogle Scholar
  29. 29.
    P.W. Gray, D.W. Leung, D. Pennica, E. Yelverton, R. Najarian, C.C. Simonsen, R. Derynck, P.J. Sherwood, D.M. Wallace, S.L. Berger, A.D. Levinson, and D.V. Goeddel, Expression of human immune interferon cDNA in E.coli and monkey cells, Nature 295: 503 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    S. Nagata, H. Taira, A. Hall, L. Johnsrud, M. Streuli, J. Ecsödi, W. Boll, K. Cantell, and C. Weissmann, Synthesis in E.coli of a polypeptide with human leukocyte interferon activity, Nature 284:316 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    C. Weissmann, The cloning of interferon and other mistakes, in: “Interferon 3”, I. Gresser, ed., Academic Press, London, p. 101 (1981).Google Scholar
  32. 32.
    R. Derynck, J. Content, E. De Clercq, G. Volckaert, J. Tavernier, R. Devos, and W. Fiers, Isolation and structure of a human fibroblast interferon gene, Nature 285:542 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    W.G. Lewis and K.H. Fantes, The purification of interferons: recent developments, in: “Interferon. Vol. 1. General and Applied Aspects”, A. Billiau, ed., Elsevier Sci. Publ., Amsterdam, p. 251 (1984).Google Scholar
  34. 34.
    I.M. Kerr, R.E. Brown, and L.A. Ball, Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment, Nature 250 5 57 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    R.M. Friedman, D.H. Metz, R.M. Esteban, D.R. Tovell, L.A. Ball, and I.M. Kerr, Mechanism of interferon action: inhibition of viral messenger ribonucleic acid translation in L-cell extracts, J. Virol. 10:1184 (1972).PubMedGoogle Scholar
  36. 36.
    I.M. Kerr, R.E. Brown, and A.G. Hovanessian, Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature 268:540 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Baglioni, M.A. Minks, and P.A. Maroney, Interferon action may be mediated by activation of a nuclease by pppA2′p5′A2′p5′A, Nature 273:684 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Lebleu, G.C. Sen, S. Shaila, B. Cabrer, and P. Lengyel, Interferon, double-stranded RNA, and protein phosphorylation, Proc. Natl. Acad. Sci. USA 73:3107 (1976).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Zilberstein, P. Federman, L. Shulman, and M. Revel, Specific phosphorylation in vitro of a protein associated with ribosomes of in-terferon-treated mouse L cells, FEBS Lett. 68:119 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    A. Billiau, V.G. Edy, H. Sobis, and P. De Somer, Influence of interferon on virus-particle synthesis in oncornavirus-carrier lines. II. Evidence for a direct effect on particle release, Int. J. Cancer 14:335 (1974).PubMedCrossRefGoogle Scholar
  41. 41.
    O. Haller, Inborn resistance of mice to orthomyxoviruses, Curr. Top. Microbiol. Immunol. 92:25 (1981).PubMedCrossRefGoogle Scholar
  42. 42.
    P. Staeheli and O. Haller, Interferon-induced human protein with homology to protein Mx of influenza virus-resistant mice, Mol. Cell. Biol. 5:2150 (1985).PubMedGoogle Scholar
  43. 43.
    P. Staeheli, O. Haller, W. Boll, J. Lindenmann, and C. Weissmann, Mx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus, Cell 44:147 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    R.M. Krug, M. Shaw, B. Broni, G. Shapiro, and O. Haller, Inhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product, J. Virol. 56:201 (1985).PubMedGoogle Scholar
  45. 45.
    J.A. Sonnaben and R.M. Friedman, Mechanism of interferon action, in: “Interferons and Interferon Inducers”, N.B. Finter, ed., North-Holland Publ. Co., Amsterdam, p. 201 (1973).Google Scholar
  46. 46.
    K. Paucker, K. Cantell, and W. Henle, Quantitative studies on viral interference in suspended L cells. III. Effect of interfering viruses and interferon on the growth rate of cells, Virology 17:324 (1962).PubMedCrossRefGoogle Scholar
  47. 47.
    I. Gresser, J. De Maeyer-Guignard, M.G. Tovey, and E. De Maeyer, Electrophoretically pure mouse interferon exerts multiple biologic effects, Proc. Natl. Acad. Sci. USA 76:5308 (1979).PubMedCrossRefGoogle Scholar
  48. 48.
    W.E. Stewart II, L.B. Gosser, and R.Z. Lockart Jr., Priming: a nonantiviral function of interferon, J. Virol. 7:792 (1971).PubMedGoogle Scholar
  49. 49.
    W.E. Stewart II, Varied biologic effects of interferon, in: “Interferon 1”, Academic Press, London, p. 29 (1979).Google Scholar
  50. 50.
    E. De Maeyer, Interferons and the immune system, in: “Interferon. Volume 1. General and Applied Aspects”, A. Billiau, ed., Elsevier Sci. Publ., Amsterdam, p. 167 (1984).Google Scholar
  51. 51.
    J. Taylor-Papadimitriou, Effects of interferon on cell growth and function, in: “Interferon. Volume 1. General and Applied Aspects”, A. Billiau, ed., Elsevier Sci. Publ., Amsterdam, p. 139 (1984).Google Scholar
  52. 52.
    H. Schellekens, K. Nooter, and P.H. van der Meide, Efficacy and toxicity of interferons in experimental animals, in: “Interferon 8”, Academic Press, London, in press (1987).Google Scholar
  53. 53.
    H. Schellekens, K. Nooter, and P.H. van der Meide, in: “Clinical Aspects of Interferon”, Revel and Becker, eds., Martinus Nijhoff Publ., Dordrecht, in press (1987).Google Scholar
  54. 54.
    H. Schellekens and P.H. van der Meide, Animal studies with interferon, in: “The Biology of the Interferon System 1983”, E. De Maeyer and H. Schellekens, eds., Elsevier Sci. Publ., Amsterdam, p. 409 (1983).Google Scholar
  55. 55.
    H. Schellekens and P.H. van der Meide, in: “The Interferon System: A Current Review”, S. Baron et al., eds., 3rd ed., The University of Texas Press, in press (1987).Google Scholar
  56. 56.
    H. Schellekens, W. Weimar, K. Cantell, and L. Stitz, Antiviral effect of interferon in vivo may be mediated by the host, Nature 278:742 (1979).PubMedCrossRefGoogle Scholar
  57. 57.
    H. Schellekens, A. De Reus, and P.H. van der Meide, How to achieve the more general use of interferon as an antiviral agent in man, in: “The Biology of the Interferon System 1985”, W.E. Stewart II and H. Schellekens, eds., Elsevier Sci. Publ., Amsterdam, p. 365 (1986).Google Scholar
  58. 58.
    C.-S. Sun, P.R. Wyde, S.Z. Wilson, and V. Knight, Efficacy of aerosolized recombinant interferons against vesicular stomatitis virus-induced lung infection in cotton rats, J. Interferon Res. 4:449 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    O. Sasaki, T. Karaki, and J. Imanishi, Protective effect of interferon on infections with hand, foot and mouth disease virus in newborn mice, J. Infect. Pis. 153:498 (1986).CrossRefGoogle Scholar
  60. 60.
    I. Gresser, Can interferon induce disease ?, in: “Interferon 4”, I. Gresser, ed., Academic Press, London, p. 95 (1982).Google Scholar
  61. 61.
    H. Schellekens, The toxicity of human interferons in nonhuman primates, in: “Interferons”, T.C. Merigan and R.M. Friedman, eds., UCLA Symposia, vol. 25, p. 387 (1982).Google Scholar
  62. 62.
    H. Schellekens and P.H. van der Meide, J. Med. Primatol. 13:235 (1984).PubMedGoogle Scholar
  63. 63.
    P.K. Weck, J.L. Brandsma, and J.K. Whisnant, Interferons in the treatment of human papillomavirus diseases, Cancer Metast. Rev. 5:139 (1986).CrossRefGoogle Scholar
  64. 64.
    R. Sundmacher, The role of interferon in prophylaxis and treatment of dendritic keratitis, in: “Herpes Simplex Infections of the Eye”. Contemporary Issues in Ophthalmology, vol. 1, F.C. Blodi, ed., Livingstone, New York, p. 129 (1984).Google Scholar
  65. 65.
    R. Sundmacher, A. Mattes, D. Neumann-Haefelin, G. Adolf, and B. Kruss, The potency of interferon-alpha 2 and interferon-gamma in a combination therapy of dendritic keratitis. A controlled clinical study, Current Eye Res. 6:273 (1987).CrossRefGoogle Scholar
  66. 66.
    G.M. Scott and D.A.J. Tyrrell, Antiviral effects of interferon in man, in: “Interferon. Volume 4. In vivo and Clinical Studies”, N.B. Finter and R.K. Oldham, eds., Elsevier Sci. Publ., Amsterdam, p. 181 (1985).Google Scholar
  67. 67.
    K.L. Hartshorn and M.S. Hirsch, Interferons, in: “The Antimicrobial Agents Annual 2”, P.K. Peterson and J. Verhoef, eds., Elsevier Sci. Publ., Amsterdam, p. 339 (1987).Google Scholar
  68. 68.
    J.M. Bottomley and J.L. Toy, Clinical side effects and toxicities of interferon, in: “Interferon. Volume 4. In Vivo and Clinical Studies”, N.B. Finter and R.K. Oldham, eds., Elsevier Sci. Publ., Amsterdam, p. 155 (1985).Google Scholar
  69. 69.
    M. Cebrián, E. Yagüe, M.O. de Landázuri, M. Rodiguez-Moya, M. Fresno, N. Pezzi, S. Llamazares, and F. Sánchez-Madrid, Different functional sites on rIFN-α2 and their relation to the cellular receptor binding site, J. Immunol. 138:484 (1987).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • H. Schellekens
    • 1
  1. 1.Primate CenterRijswijkThe Netherlands

Personalised recommendations