Virus Drug Resistance

  • Hugh J. Field
  • Lindsey J. Owen
Part of the NATO ASI Series book series (NSSA, volume 143)


Drug resistance in viruses is generally considered to be an acquired heritable change which is characterised by relief from inhibition by a particular drug. This is always the result of one or more mutations in the virus genome, causing changes in targets for the drug or its metabolites which are reflected in a measurable difference in sensitivity between the mutant and parental strain. Such resistance has now been observed in widely divergent virus families to a variety of specific inhibitors; some important examples are summarised in Table 1.


Herpes Simplex Virus Antiviral Activity Herpes Simplex Virus Type Thymidine Kinase Resistant Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaudeen, H.S. (1985) Distinctive properties of DNA polymerase induced by herpes simplex virus type-1 and Epstein-Barr virus. Antiviral Res. 5, 1–12.PubMedGoogle Scholar
  2. Allen, L.B. & Fingal, C.M. (1977) Failure of type 1 herpesvirus to develop resistance to ribavirin. Antimicrob. Ag. Chemother. 12, 120–121.Google Scholar
  3. Anderson, J.R. & Field, H.J. (1982) The development of retinitis in mice with non-fatal herpes simplex encephalitis. Neuropath. Appl. Neurobiol. 8, 277–287.Google Scholar
  4. Anderson-Sillman, K., Bartal, S. & Tershak, D.R. (1984) Guanidine-resistant poliovirus mutants produce modified 37-kilodalton proteins. J. Virol. 50, 922–928.PubMedGoogle Scholar
  5. Appleyard, G. & Way, H. (1966) Thiosemicarbazone-resistant rabbitpox virus. Brit. J. Exp. Pathol. 47, 144–151.Google Scholar
  6. Barrera-Oro, J.G. & Melnick, J.L. (1961) The effect of guanidine: (1) on the experimental poliomyelitis induced by oral administration virus to cynomolgus monkeys; (2) on naturally occurring enteroviruses of cynomolgus monkeys. Tex. Rep. Biol. Med. 19, 529–539.PubMedGoogle Scholar
  7. Barry, D.W., Lehrman, S.N. & Ellis, M.N. (1986) Clinical and laboratory experience with acyclovir-resistant herpes viruses. J. Antimicrob. Chemother. 18, Suppl. B. 75–84.PubMedGoogle Scholar
  8. Biron, K.K., Fyfe, J.A., Stanat, S.C., Leslie, L.K., Sorrell, J.B., Lambe, CU. & Coen, D.M. (1986) A human cytomegalovirus mutant resistant to the nucleoside analog 9- {[2-hydroxy-l(hydroxymethyl)ethoxy] methyl} guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc. Nat. Acad. Sci. USA 83, 8769–8773.PubMedGoogle Scholar
  9. Buller, R.M.L., Smith, G.L., Cremer, K., Notkins, A.L. & Moss, B. (1985) Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase- negative phenotype. Nature 317, 813–815.PubMedGoogle Scholar
  10. Caliguiri, L.A., McSharry, J.J. & Lawrence, G.W. (1980) Effect of arildone on modifications of poliovirus in vitro. Virol. 105, 86–93.Google Scholar
  11. Canonico, P.G. (1983) Ribavirin — a review of efficacy, toxicity and mechanisms of antiviral activity. In ‘Antibiotics Vol. VI, Modes and Mechanisms of Microbial Growth Inhibitors’, Ed. F.E. Hahn, Springer Verlag, BerlinGoogle Scholar
  12. Carp, R.I. (1964) Studies on the guanidine character of poliovirus. Virol. 22, 270–279.Google Scholar
  13. Cheng, Y-C., Dutschman, G., De Clercq, E., Jones, A.S., Rahim, S.G., Verhelst, G. & Walker, R.T. (1981) Differential affinities of 5-(2-halogenovinyl)-2′-deoxyuridines for deoxythymidine kinases of various origins. Molec. Pharmacol. 20, 230–233.Google Scholar
  14. Chiou, H.C., Weller, S.K. & Coen, D.M. (1985) Mutations in the herpes simplex virus major DNA binding protein gene leading to altered sensitivity to DNA polymerase inhibitors. Virol. 145, 213–226Google Scholar
  15. Christophers, J. & Sutton, R.N.P. (1987) Characterization of acyclovir-resistant and sensitive clinical isolates of herpes simplex virus from an immunocompromised patient. J. Antimicrob. Chemother, in press.Google Scholar
  16. Cochran, K.W., Massaab, H.R., Tsunoda, H.F. & Berlin, B.S. (1965) Studies on the antiviral activity of amantadine hydrochloride. Ann. N.Y. Acad. Sci. 130, 432–439.PubMedGoogle Scholar
  17. Coen, D.M. (1986) General aspects of virus drug resistance with special reference to herpes simplex virus. J. Antimicrob. Chemother. 18, Suppl. B, 1–10.PubMedGoogle Scholar
  18. Coen, D.M. & Schaffer, P.A. (1980) Two distinct loci confer resistance to acycloguanosine in herpes simplex virus type 1. Proc. Natl. Acad. Sci. USA 77, 2265–2269.PubMedGoogle Scholar
  19. Coen, D.M., Chiou, H.C., Fleming, H.E. Jr., Leslie, L.K. & Retondon, M.J. (1984) Drug resistant and hypersensitive herpes simplex virus mutants: isolation and application to dissection of the pol locus. In ‘Herpesvirus’ Ed. F. Rapp, Alan R. Liss, New York, 373–385.Google Scholar
  20. Coen, D.M., Fleming, H.E. Jr., Leslie, L.K. & Retondo, M.J. (1985) Sensitivity of arabinosyladenine-resistant mutants of herpes simplex mutants to other antiviral drugs and mapping of drug hypersensitivity mutations to the DNA polymerase locus. J. Virol. 53, 477–488.PubMedGoogle Scholar
  21. Coleman, V.R., Tsu, E. & Jawetz, E. (1968) ‘Treatment resistance’ to idoxuridine in herpetic keratitis. Proc. Soc. Exp. Biol. Med. 129, 761–765.PubMedGoogle Scholar
  22. Cooper, P., Wentworth, B. & McCahon, D. (1970) Guanidine inhibition of poliovirus: a dependence of viral RNA synthesis on the configuration of the structural protein. Virol. 40, 486–493.Google Scholar
  23. Cooper, P.D. (1968) A genetic map of poliovirus temperature sensitive mutants. Virol. 35, 584–596.Google Scholar
  24. Cremer, D.K., Bodemer, M., Summers, W.P., Summers, W.C. & Gesteland, R.F. (1979) In vitrosuppression of UAG and UGA mutants in the thymidine kinase gene of herpes simplex virus. Proc. Natl. Acad. Sci. USA 76, 430–434.PubMedGoogle Scholar
  25. Crowther, D. & Melnick, J. L. (1961) Studies on the inhibitory action of guanidine on poliovirus multiplication in cell cultures. Virol. 15, 65–74.Google Scholar
  26. Crumpacker, C.S., Schnipper, L.E., Marlowe, S.I., Kowalsky, P.N., Hershey, B.J. & Levin, M.J. (1982) Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. New Eng. J. Med. 306, 343–346.PubMedGoogle Scholar
  27. Daniels, R.S., Downie, J.C., Hay, A.J., Knossow, M., Skehel, J.J., Wang, M.L. & Wiley, D.C. (1985) Fusion mutants of the influenza virus haemagglutinin glycoprotein. Cell, 40, 431 – 439.PubMedGoogle Scholar
  28. Darby, G. Larder, B.A. & Inglis, M.M. (1986) Evidence that the ‘active centre’ of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. J. Gen. Virol. 67, 753–758.Google Scholar
  29. Darby, G., Churcher, M.J. & Larder, B.A. (1984) Cooperative effects between two acyclovir resistance loci in herpes simplex virus. J. Virol. 50, 838–846.PubMedGoogle Scholar
  30. Darby, G., Field, H.J. & Salisbury, S.A. (1981) Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 289, 81–83.PubMedGoogle Scholar
  31. Datema, R., Ericson, A-C., Field, H.J., Larsson, A. & Stenberg, K. (1987) Critical determinants of antiherpes efficacy of buciclovir and related acyclic guanosine analogs. in press.Google Scholar
  32. Davies, W.L., Grunert, R.R., Haff, R.M., McGahen, J.W., Neumayer, E.M. & Paulshock, M. (1964) Antiviral activity of 1- adamantanamine (amantadine). Science 144, 862–863.PubMedGoogle Scholar
  33. De Clercq, E. (1982) Specific targets for antiviral drugs. Biochem. J. 205, 1–13.PubMedGoogle Scholar
  34. De Filippes, F.M. (1984) Effect of aphidicolin on vaccinia virus: isolation of an aphidicolin-resistant mutant. J.Virol. 52, 474–482.Google Scholar
  35. Dolin, R., Reichman, R.C., Madore, H.P., Maynard, R., Linton, P.N. & Webber-Jones, J. (1982) A controlled trial of amantadine and rimantadine in the prophylaxis of influenza A infection. New Eng. J. Med. 307, 580–584.Google Scholar
  36. Dubbs, D.R. & Kit, S. (1964) Mutant strains of herpes simplex deficient in thymidine kinase-inducing activity. Virol. 22, 493–502.Google Scholar
  37. Eggers, H.J. (1977) Selective inhibition of uncoating of echovirus 12 by rhodanine. A study of virus-cell interactions. Virol. 78, 241–252.Google Scholar
  38. Eggers, H.J. (1985) Antiviral agents against picornaviruses. Antivir. Res. Suppl. 1, 57–65.Google Scholar
  39. Eggers, H.J. & Tamm, I. (1961) Spectrum and characteristics of the virus inhibitory action of 2- (alpha-hydroxybenzyl)-benzimidazole. J. Exp. Med. 113, 657.PubMedGoogle Scholar
  40. Eggers, H.J. & Tamm, I. (1963a) Drug dependence of enteroviruses: variance of Coxsackie A9 and ECHO 13 viruses which require 2-(alpha-hydroxybenzyl) benzimidazole for growth. Virol. 20, 62–74.Google Scholar
  41. Eggers, H.J. & Tamm, I. (1963b) Synergistic effect of 2-(alpha-hydroxybenzyl) benzimidazole and guanidine on Picornavirus replication. Nature 199, 513–514.PubMedGoogle Scholar
  42. Ellis, M.N., Martin, J.L., Lobe, D.C., Johnsrude, J.D. & Barry, D.W. (1986) Induction of acyclovir-resistant mutants of herpes simplex virus type 1 in athymic nude mice. J. Antimicrob. Chemother. 18, Suppl. B, 95–101.PubMedGoogle Scholar
  43. Emini, E.A., Leibowitz, J., Diamond, D.C., Bonin, J. & Wimmer, E. (1984) Recombinants of Mahoney and Sabin strain poliovirus type 1: analysis of in vitrophenotypic markers and evidence that resistance to guanidine maps in the nonstructural proteins. Virol. 137, 74–85.Google Scholar
  44. Ferrari, W., Gessa, G.L., Loddo, B. & Schivo, M.L. (1965) Decreased pathogenicity for the rabbit skin of IDU-resistant vaccinia virus. Virol. 26, 154–155.Google Scholar
  45. Field, H.J. (1982) Development of clinical resistance to acyclovir in herpes simplex virus-infected mice receiving oral therapy. Antimicrob. Ag. Chemother. 21, 744–752.Google Scholar
  46. Field, H.J. (1985) Resistance and latency. Brit. Med. Bul. 41, 345–350.Google Scholar
  47. Field, H.J. (1986) Resistance to acyclovir. In ‘Human Herpes Infections’ Ed. C. Lopez & B. Roizman. Raven Press, New York, 177–192.Google Scholar
  48. Field, H.J. & Coen, D.M. (1986) Pathogenicity of herpes simplex virus mutants containing drug resistance mutations in the viral DNA polymerase gene. J. Virol. 60, 286–289.PubMedGoogle Scholar
  49. Field, H.J. & Darby, G. (1980) Pathogenicity in mice of strains of herpes simplex virus which are resistant to acyclovir in vitroand in vivo. Antimicrob. Ag. Chemother. 17, 209–216.Google Scholar
  50. Field, H.J., Darby, G. & Wildy, P. (1980) Isolation and characterization of acyclovir-resistant mutants of herpes simplex virus. J. Gen. Virol. 49, 115–124.PubMedGoogle Scholar
  51. Field, H.J. & Lay, E. (1984) Characterization of latent infections in mice after inoculation with herpes simplex virus which is clinically resistant to acyclovir. Antivir. Res. 4, 43–52.PubMedGoogle Scholar
  52. Field, H., MacMillan, A. & Darby, G. (1981) The sensitivity of acyclovir-resistant mutants of herpes simplex virus to other antiviral drugs. J. Inf. Dis. 143, 281–285.Google Scholar
  53. Field, H.J. & Neden, J. (1982) Isolation of bromovinyldeoxyuridine-resistant strains of herpes simplex virus and successful chemotherapy of mice infected with one such strain by using acyclovir. Antiviral Res. 2, 243–254.PubMedGoogle Scholar
  54. Field, H.J. & Reading, M.J. (1987) The inhibition of bovine herpesvirus-1 by methyl 2-pyridyl ketone thiosemicarbazone and its effects on bovine cells. Antiviral Res. in press.Google Scholar
  55. Foster, D.A., Hantzopoulos, P. & Zubay, G. (1982) Resistance of adenoviral DNA replication to aphidicolin is dependent on the 72-kilodalton DNA-binding protein. J. Virol. 43, 679 – 686.PubMedGoogle Scholar
  56. Furman, P.A., Coen, D.M., St. Clair, M.H., & Schaffer, P.A. (1981) Acyclovir-resistant mutants of herpes simplex virus type 1 express altered DNA polymerase or reduced acyclovir phosphorylating activities. J. Virol. 40, 936–941.PubMedGoogle Scholar
  57. Fyfe, J.A. (1982) Differential phosphorylation of (E)-5-(2-bromovinyl)-2′ deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus. Mol. Pharmacol. 21, 432–437.PubMedGoogle Scholar
  58. Galbraith, A.W. (1985) Influenza — recent developments in prophylaxis and treatment. Brit. Med. Bull. 41, 381–385.PubMedGoogle Scholar
  59. Gauri, K.K. (1979) Antiherpes polychemotherapy. Adv. Ophthalmol. 38, 151–163.PubMedGoogle Scholar
  60. Ghendon, Y., Markushin, S., Heider, H., Melnikov, S. & Lotte, V. (1986) Haemagglutinin of influenza A virus is a target for the antiviral effect of NorakinR. J. Gen. Virol. 67, 1115–1122.PubMedGoogle Scholar
  61. Gold, D. & Corey, L. (1987) Acyclovir prophylaxis for herpes simplex virus infection. Antimicrob. Ag. Chemother. 31, 361–367.Google Scholar
  62. Grinsted, J. (1986) Evolution of transposable elements. J. Antimicrob. Chemother. 18, Suppl. C, 77–83.PubMedGoogle Scholar
  63. Hall, C.B., McBride, J.T., Gala, C.L., Hildreth, S.W. & Schnabel, K.C. (1985) Ribavirin treatment of respiratory syncytial viral infection in infants with underlying cardio pulmonary disease. J. Am. Med. Assoc. 254, 3047–3051.Google Scholar
  64. Hall, C.B., McBride, J.T., Walsh, E.E., Bell, D.M., Gala, C.L., Hildreth, S., Eyck, L.G.I. & Hall, W.J. (1983) Aerosolized ribavirin treatment of infants with respiratory syncytial viral infection. A randomized double blind study. N. Eng. J. Med. 308, 1443–1447.Google Scholar
  65. Hall, M.J. (1986) Anti-herpes virus combinations in relation to drug resistance. J. Antimicrob. Chemother. 18, Suppl. B, 165–176.PubMedGoogle Scholar
  66. Harmenberg, J., Abele, G. & Wahren, B. (1985a) Nucleoside pools of acyclovir-treated herpes simplex type 1 infected cells. Antiviral Res. 5, 75–81.PubMedGoogle Scholar
  67. Harmenberg, J., Abele, G. & Malm, M. (1985b) Deoxythymidine pools in animal and human skin with reference to antiviral drugs. Arch. Dermatol. Res. 277, 402–403.PubMedGoogle Scholar
  68. Harmenberg, J., Sundqvist, V-A., Gadler, H., Leven, B., Brannstrom, G. & Wahren, B. (1986) Comparative methods for detection of thymidine kinase-deficient herpes simplex virus type 1 strains. Antimicrob. Ag. Chemother. 30, 570–573.Google Scholar
  69. Harmenberg, J., Wahren, B., Sundqvist, V-A., Leven, B. (1985c) Multiplicity dependence and sensitivity of herpes simplex virus isolates to antiviral compounds. J. Antimicrob. Chemother. 15, 567–573.PubMedGoogle Scholar
  70. Hay, A.J. & Zambon, M.C. (1984) Multiple actions of amantadine against influenza viruses. In ‘Antiviral Drugs and Interferon: The Molecular Basis of their Activity’ Ed. Y. Becker, Martinus Nijhoff, Boston, USA.Google Scholar
  71. Hay, A.J., Wolstenholme, A.J., Skehel, J.J. & Smith, M.H. (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO J. 4, 3621–3624.Google Scholar
  72. Hay, A.J., Zambon, M.C., Wolstenholme, A.J., Skehel, J.J. & Smith, M.H. (1986) Molecular basis of resistance of influenza A viruses to amantadine. J. Antimicrob. Chemother. 18, Suppl. B, 19–29.PubMedGoogle Scholar
  73. Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. (1980) On entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 84, 404–420.PubMedGoogle Scholar
  74. Helenius, A., Marsh, M. & White, J. (1982) Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. Gen. Virol. 58, 47–61.PubMedGoogle Scholar
  75. Herrmann, E.C. Jr. & Herrmann, J.A. (1977) A working hypothesis — virus resistance development as an indicator of specific antiviral activity. Ann. N. Y. Acad. Sci. 284, 632 – 637.PubMedGoogle Scholar
  76. Hill, B.T. (1986) Resistance of mammalian tumour cells to anticancer drugs: mechanisms and concepts relating specifically to methotrexate and vincristine. J. Antimicrob. Chemother. 18, Suppl. B, 61–73.PubMedGoogle Scholar
  77. Honess, R.W., Purifoy, D.J.M., Young, D., Gopal, R., Cammack, N. & O’Hare, P. (1984) Single mutations at many sites within the DNA polymerase locus of herpes simplex viruses can confer hypersensitivity to aphidicolin and resistance to phosphonoacetic acid. J. Gen Virol. 65, 1–17.PubMedGoogle Scholar
  78. Honess, R.W. & Watson, D.H. (1977) Herpes simplex virus resistance and sensitivity to phosphonoacetic acid. J. Virol. 21, 584–600.PubMedGoogle Scholar
  79. Howell, C.L. & Miller, M.J. (1984) Rapid method for determining the susceptibility of herpes simplex virus to acyclovir. Diagn. Microb. Inf. Dis. 2, 77–84.Google Scholar
  80. Ishitsuka, H., Ninomiya, Y. & Suhara, Y. (1986) Molecular basis of drug resistance to new antirhinovirus agents. J. Antimicrob. Chemother. 18, Suppl. B, 11–18.PubMedGoogle Scholar
  81. Jamieson, A.T. & Subak-Sharpe, J.H. (1974) Biochemical studies on the herpes simplex virus-specified deoxypyrimidine kinase activity. J. Gen. Virol. 24, 481–492.PubMedGoogle Scholar
  82. Jawetz, E., Coleman, W.R., Dawson, C.R. & Thygeson, P. (1970) The dynamics of IUDR action in herpetic keratitis and the emergence of IUDR-resistance in vivo. Ann. N.Y. Acad. Sci. 173, 282–291.Google Scholar
  83. Katz, E. & Margalith, E. (1984) Antiviral activity of SK & F 21681 against herpes simplex virus. Antimicrob. Ag. Chemother. 25, 195–200.Google Scholar
  84. Katz, E., Margalith, E., Winer, B. & Lazar, A. (1973) Characterization and mixed infections of three strains of vaccinia virus: wild type, IBT-resistant and IBT-dependent mutants. J. Gen. Virol. 21, 469–475.PubMedGoogle Scholar
  85. Kerridge, D. & Nicholas, R.O. (1986) Drug resistance in the opportunistic pathogens candida albicans and candida glabrata. J. Antimicrob. Chemother. 18, Suppl. B, 39–49.PubMedGoogle Scholar
  86. Kit, S. (1985) Thymidine kinase. Microbiol. Sci. 2, 369–375.PubMedGoogle Scholar
  87. Kit, S., Sheppard, M., Ichimura, H., Lehrman, N.S. & Otsuka, H. (1987) Nucleotide sequence changes in the thymidine kinase gene of herpes simplex virus type 2 clones from a patient treated with acyclovir. In the press.Google Scholar
  88. Klein, R.J. (1975) Isolation of herpes simplex virus clones and drug resistant mutants in microcultures. Arch. Virol. 49, 73–80.PubMedGoogle Scholar
  89. Korant, B.D. (1977) Poliovirus coat protein as the site of guanidine action. Virol. 81, 17–28.Google Scholar
  90. Lamb, R.A., Zebedee, S.L. & Richardson, C.D. (1985) Influenza virus M2 protein is an integral membrane protein expressed on the infected cell surface. Cell, 40, 627–633.PubMedGoogle Scholar
  91. Larder, B.A., Cheng, Y-C. & Darby, G. (1983a) Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. J. Gen. Virol. 64, 523–532.PubMedGoogle Scholar
  92. Larder, B.A. & Darby, G. (1984) Virus drug-resistance: mechanisms and consequences. Antiviral Res. 4, 1–42.PubMedGoogle Scholar
  93. Larder, B.A. & Darby, G. (1986) Susceptibility to other antiherpes drugs of pathogenic variants of herpes simplex virus selected for resistance to acyclovir. Antimicrob. Ag. Chemother. 29, 894–898.Google Scholar
  94. Larder, B.A., Derse, D., Cheng, Y-C. & Darby, G. (1983b) Properties of purified enzymes induced by pathogenic drug-resistant mutants of herpes simplex virus. J. Biol. Chem. 258, 2027–2023.PubMedGoogle Scholar
  95. Larder, B.A., Derse, D., Cheng, Y-C. & Darby, G. (1983b) Properties of purified enzymes induced by pathogenic drug-resistant mutants of herpes simplex virus. Evidence for virus variants expressing normal DNA polymerase and altered thymidine kinase. J. Biol. Chem. 285, 2027–2033.Google Scholar
  96. Larder, B.A., Kemp, S.D. & Darby, G. (1987) Related functional domains in virus DNA polymerase. EMBO J. 6, 169 – 175.PubMedGoogle Scholar
  97. Larsson, A., Brannstrom, G., & Oberg, B. (1983) Kinetic analysis in cell culture of the reversal of antiherpes activity of nucleoside analogs by thymidine. Antimicrob. Ag. Chemother. 24, 819–822.Google Scholar
  98. Lehrman, S.N., Hill, E.L., Rooney, J.F., Ellis, M.N., Barry, D.W. & Strauss, S.E. (1986) Extended acyclovir therapy for herpes genitalis: changes in virus sensitivity and strain variation. J. Antimicrob. Chemother. 18, Suppl. B. 85–94.PubMedGoogle Scholar
  99. Littler, E., Zeuthen, J., McBride, A.A., Sorensen, E.T., Powell, K.L., Walsh-Arrand, J.E. & Arrand, J.R. (1986) Identification of an Epstein-Barr virus-coded thymidine kinase. EMBO J. 5, 1959–1966.PubMedGoogle Scholar
  100. Loddo, B., Ferrari, W., Spanedda, A., & Brotzu, G. (1962) In vitro guanidine resistance and guanidine dependence of polioviruses. Experientia 18, 518–519.PubMedGoogle Scholar
  101. Martin, J.L., Ellis, M.N., Keller, P.M., Biron, K.K., Lehrman, S.N., Barry, D.W. & Furman, P.A. (1985) Plaque autoradiographic assay for the detection and quantitation of thymidine kinase-deficient and thymidine kinase-altered mutants of herpes simplex in clinical isolates. Antimicrob. Ag. Chemother. 28, 181–187.Google Scholar
  102. McKnight, S.L. (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nuc. Acids Res. 8, 5949–5964.Google Scholar
  103. McLaren, C., Corey, L., Dekker, C. & Barry, D.W. (1983) In vitro sensitivity to acyclovir in genital herpes simplex virus from acylovir-treated patients. J. Inf. Dis. 148, 868 – 875.Google Scholar
  104. McLaren, C., Ellis, M.N. & Hunter, G.A. (1983) A colorimetric assay for the measurement of the sensitivity of herpes simplex virus to antiviral agents. Antiviral Res. 3, 223–234.PubMedGoogle Scholar
  105. McSharry, J.J, Caliguiri, L.A. & Eggers, H.J. (1979) Inhibition of uncoating of poliovirus by arildone a new antiviral drug. Virol. 97, 307–315.Google Scholar
  106. Melnick, J.L., Crowther, D. & Barrera-Oro, J. (1961) Rapid development of drug resistant mutants of poliovirus. Science 134, 551.Google Scholar
  107. Mitsuya, H. & Broder, S. (1987) Strategies for antiviral therapy in AIDS. Nature 325, 773–778.PubMedGoogle Scholar
  108. Moss, B. & Cooper, N. (1982) Genetic evidence for vaccinia virus-encoded polymerase: isolation of phosphonoacetate-resistant enzyme from the cytoplasm of cells infected with mutant virus. J. Virol. 43, 673–678.PubMedGoogle Scholar
  109. Moss, B., Rosenblum, E.N., Katz, E. & Grimley, P.M. (1969) Rifampicin: a specific inhibitor of vaccinia virus assembly. Nature 224, 1280–1284.PubMedGoogle Scholar
  110. Muratore, O., Varnier, O.E., Raffanti, S.P. & Schito, G.C. (1984) In vitrorecovery of resistant retrovirus isolates after exposure to phosphonoformate. Eur. J. Clin. Microbiol. 3, 447–449.PubMedGoogle Scholar
  111. Nakamura, Y., Bolloli, A., & Varaldi, V. (1967) Ricerche sulla patogenicita e sul potere immunizzante di un ceppo di virus vaccinico resistente alla 5-iodo-2′-deossiuridina. Boll. Inst. Sieroterapico Milanese 46, 281–287.Google Scholar
  112. Ninomiya, Y., Aoyama, M., Umeda, I, Suhara, Y. & Ishitsuka, H. (1985) Comparative studies on the modes of action of the antirhinovirus agents RO 09–0410, RO 09–0179, RMI-15,731, 6- dichloroflavan, and enviroxime. Antimicrob. Ag. Chemother. 27, 595–599.Google Scholar
  113. O’Brien, T.F. (1986) Resistance to antibiotics at medical centres in different parts of the world. J. Antimicrob. Chemother. 18, Suppl. C, 243–253.PubMedGoogle Scholar
  114. Oxford, J.S. & Galbraith, A. (1980) Antiviral activity of amantadine: a review of laboratory and clinical data. Pharm. Therapeut. 11, 181–262.Google Scholar
  115. Oxford, J.S., Logan, I.S. & Potter, C.W. (1970) In vivoselection of an influenza A2 strain resistant to amantadine. Nature 226, 82–83.PubMedGoogle Scholar
  116. Parris, D.S. & Harrington, J.E. (1982) Herpes simplex virus variants resistant to high concentrations of acyclovir exist in clinical isolates. Antimicrob. Ag. Chemother. 22, 71 – 77.Google Scholar
  117. Patterson, S. & Oxford, J.S. (1986) Analysis of antigenic determinants on internal and external proteins of influenza virus and identification of antigenic sub-populations of virions in recent field isolates using monoclonal antibodies and immunogold labelling. Arch. Virol. 88, 189–202.PubMedGoogle Scholar
  118. Pemberton, R.M., Jennings, R., Potter, C.W. & Oxford, J.S. (1986) Amantadine resistance in clinical influenza A (H3N2) and (H1N1) virus isolates. J. Antimicrob. Chemother. 18, Suppl. B, 135–140.PubMedGoogle Scholar
  119. Phillips, I. (1986) Resistance as a cause of treatment failure. J. Antimicrob. Chemother. 18, Suppl. C, 255–260.PubMedGoogle Scholar
  120. Phillpotts, R.J. & Tyrrell, D.A.J. (1985) Rhinovirus colds. Brit. Med. Bull. 41, 386–390.PubMedGoogle Scholar
  121. Pincus, S.E., Diamond, D.C., Emini, E.A. & Wimmer, E. (1986) Guanidine-selected mutants of poliovirus: mapping of point mutations to polypeptide 2C. J. Virol. 57, 638–646.PubMedGoogle Scholar
  122. Pincus, S.E. & Wimmer, E. (1986) Production of guanidine-resistant and -dependant poliovirus mutants from cloned cDNA: mutations in polypeptide 2C are directly responsible for altered guanidine sensitivity. J. Virol. 60, 506–514.Google Scholar
  123. Post, L.E., Mackem, S. & Roizman, B. (1981) Regulation of genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with alpha-gene promotors. Cell 24, 555–565.PubMedGoogle Scholar
  124. Presber, H.W., Schroeder, C., Hegenscheid, B., Heider, H., Reefschlager, J. & Rosenthal, H.A. (1984) Antiviral activity of NorakinR(triperidin) and related anticholinergic anti- Parkinson drugs. Acta Virol. 28, 501–507.PubMedGoogle Scholar
  125. Purifoy, D.J.M., Lewis, R.B. & Powell, K.L. (1977) Identification of the herpes simplex virus DNA polymerase gene. Nature 269, 621–623.PubMedGoogle Scholar
  126. Rapazzo, G., Grillo, A., Biondi, O., Sammartano, F. & Pignatti, P.F. (1986) Resistance of HSV-1 growth to aphidicolin in two aphidicolin resistant cell lines. Microbiol. 9, 381–386.Google Scholar
  127. Reed, S.E., Craig, J.W. & Tyrrell, D.A.J. (1976) Four compounds active against rhinovirus: comparison in vitroand in volunteers. J Inf. Dis. 133, Suppl.A, 128–135.Google Scholar
  128. Sandford, G.P., Wingard, J.R., Simons, J.W., Staal, S.P., Sarai, R. & Burns, W.H. (1985) Genetic analysis of the susceptibility of mouse cytomegalovirus to acyclovir. J. Virol. 53, 104–113.Google Scholar
  129. Saunders, K. & King, A.M.Q. (1982) Guanidine-resistant mutants of aphthovirus induce the synthesis of altered nonstructural polypeptide, p34. J. Virol. 42, 389–394.PubMedGoogle Scholar
  130. Saunders, K., King, A.M., McCahon, D., Newman, J.W., Slade, W.R. & Forss, S. (1985) Recombination and oligonucleotide analysis of guanidine-resistant foot and mouth disease virus mutants. J. Virol. 56, 921–929.PubMedGoogle Scholar
  131. Schinazi, R.F., Chou, T-C., Scott, R.T., Yao, X. & Nahmias, A.J. (1986) Delayed treatment with combinations of antiviral drugs in mice infected with herpes simplex virus and application of the median effect method of analysis. Antimicrob. Ag. Chemother. 30, 491–498.Google Scholar
  132. Schnipper, L.E. & Crumpacker, C.S. (1980) Resistance of herpes simplex virus to acycloguanosine: role of viral thymidine kinase and DNA polymerase loci. Proc. Natl. Acad. Sci. USA 77, 2270–2273.PubMedGoogle Scholar
  133. Schram, M., Laffin, J. A., Evans, B., McSharry, J.J & Caliguiri, L.A. (1982) Isolation of poliovirus variants resistant to and dependent on arildone. Virol. 122, 492 – 497.Google Scholar
  134. Schroeder, C., Heider, H., Hegenscheid, B., Schoffel, M., Bubovich, V.I. & Rosenthal, H.A. (1985). The anticholinergic anti-Parkinson drug NorakinRselectively inhibits influenza virus replication. Antiviral Res. Suppl. 1, 95–99.Google Scholar
  135. Sears, A.E., Meignier, B. & Roizman, B. (1985) Establishment of latency in mice by herpes simplex virus 1 recombinants that carry insertions affecting regulation of the thymidine kinase gene. J. Virol. 55, 410–416.PubMedGoogle Scholar
  136. Shipman, C. Jr., Smith, S.H., Drach, J.C. & Klayman, D.L. (1986) Antiviral activity of 2-acetylpyridine thiosemicarbazones against herpes simplex virus, Antimicrob. Ag. Chemother. 19, 682–685.Google Scholar
  137. Shiraki, K., Ogino, T., Yamamoto, T., Yamanishi, K. & Takahashi, M. (1986a) Susceptibilities of phosphonoacetic acid and acyclovir resistant varicella-zoster virus mutants to 9-beta- arabinofuranosyladenine and 1-beta-arabinofuranosylcytosine. Biken J. 29, 11–17.PubMedGoogle Scholar
  138. Shiraki, K., Ogino, T., Yamanishi, K. & Takahashi, M. (1986b) Thymidine kinase with altered substrate specificity of acyclovir resistant varicella-zoster virus. Biken J. 29, 7 – 10.PubMedGoogle Scholar
  139. Shiraki, K., Ogino, T., Yamanishi, K. & Takahashi, M. (1983) Isolation of drug resistant mutants of varicella-zoster virus: cross resistance of acyclovir resistant mutant with phosphonoacetic acid and bromodeoxyuridine. Biken J. 26, 17–23.PubMedGoogle Scholar
  140. Simon, E.H., King, S., Koh, T.T. & Brandman, P. (1976) Interferon-sensitive mutants of mengovirus. I Isolation and biological characterization. Virol. 69, 727–736.Google Scholar
  141. Summers, W.P., Wagner, M. & Summers, W.C. (1975) Possible peptide chain termination mutants in thymidine kinase gene of a mammalian virus, herpes simplex virus. Proc. Nat. Acad. Sci. USA 72, 4081–4084.PubMedGoogle Scholar
  142. Svennerholm, B., Valne, A., Lowhagen, G.B., Widell, A. & Lycke, E. (1985) Sensitivity of HSV strains isolated before and after treatment with acyclovir. Scand. J. Inf. Dis. Suppl. 47, 149–154.Google Scholar
  143. Tamm, I. & Eggers, H.J. (1963) Unique susceptibility of enteroviruses to inhibition by 2-(alpha-hydroxybenzyl)-benzimidazole and derivatives. In: 2nd. International Symposium of Chemotherapy, Part II. Ed. H.P. Kuemmerle, P. Preziosi, & P. Rentchnick, Karger, Basel, New York, 88.Google Scholar
  144. Tartaglia, J. & Paoletti, E. (1985) Physical mapping and DNA sequence analysis of the rifampicin resistance locus in vaccinia virus. Virol. 147, 394–404.Google Scholar
  145. Tenser, R.B. & Edris, W.A. (1986) Thymidine kinase (TK) activity in herpes simplex virus type 1 recombinants that carry insertions affecting regulation of the TK gene. Virol. 155, 257–261.Google Scholar
  146. Tenser, R.B., Ressel, S.J., Fralish, F. A. & Jones, J.C. (1983) The role of Pseudorabies virus thymidine kinase expression in trigeminal ganglion infection. J. Gen. Virol. 64, 1369–1373.PubMedGoogle Scholar
  147. Tisdale, M. & Selway, J.W.T. (1983) Inhibition of an early stage of rhinovirus replication by dichloroflavan (BW683C). J. Gen. Virol. 64, 795–803.PubMedGoogle Scholar
  148. Tisdale, M. & Selway, J.W.T. (1984) Effect of dichloroflavan (BW683C) on the stability and uncoating of rhinovirus type 1B. J. Antimicrob. Chemother. 14, Suppl. A, 97 – 105.PubMedGoogle Scholar
  149. Thomas, H.C. & Scully, L.J. (1985) Antiviral therapy in hepatitis B infection. Brit. Med. Bull. 41, 374–380.PubMedGoogle Scholar
  150. Tolskaya, E.A., Romanova, L.A., Kolesnikiva, M.S. & Agol, V. (1983) Intertypic recombination in poliovirus: genetic and biochemical studies. Virol. 124, 121–132.Google Scholar
  151. Turk, S.R., Shipman, C.Jr. & Drach, J.C. (1986) Selective inhibition of herpes simplex virus ribonucleotide diphosphate reductase by derivatives of 2-acetylpyridine thiosemicarbazone. Biochem. Pharmacol. 35, 1539–1545.PubMedGoogle Scholar
  152. Van-Dyke, R.B. & Connor, J.D. (1985) Uptake of [125I] iododeoxycytidine by cells infected with herpes simplex virus: a rapid screening test for resistance to acyclovir. J. Inf. Dis. 152, 1206–1211.Google Scholar
  153. Varnier, O.E., Muratore, O., Raffanti, S.P. & Schito, G.C. (1985) Antiviral activity of coumermycin: identification of resistant and sensitive retrovirus strains. Microbiologica 8, 283–287.PubMedGoogle Scholar
  154. Veerisetty, V. & Gentry, G.A. (1983) Alterations in substrate specificity and physicochemical properties of deoxythymidine kinase of a drug-resistant herpes simplex virus type 1 mutant. J.Virol. 46, 901–908.PubMedGoogle Scholar
  155. Vrang, L., Bazin, H., Remaud, G., Chattopadhyaya, J. & Oberg, B. (1987) Inhibition of the reverse transcriptase from HIV by 3′-azido-3′-deoxythymidine triphosphate and its threo analogue. Antiviral Res. 7, 139–149.PubMedGoogle Scholar
  156. Wade, J.C., Newton, B., McLaren, C., Flournoy, N., Keeney, R.E. & Meyers, J.D. (1982) Intravenous acyclovir to treat mucocutaneous herpes simplex virus infection after bone marrow transplantation. Ann. Intern. Med. 96, 265–269.PubMedGoogle Scholar
  157. Wagner, M.J., Sharp, J.A. & Summers, W.C. (1981) Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proc. Nat. Acad. Sci. USA. 78, 1441–1445.PubMedGoogle Scholar
  158. Wallbank, A.M., Matter, R.E. & Klinowski, N.G. (1986). l-Adamantane hydrochloride inhibition of Rous and Esk sarcoma viruses in cell culture. Science 152, 1760–1761.Google Scholar
  159. Webster, R.G., Kawoaka, Y. & Bean, W.J. (1986). Vaccination as a strategy to reduce the emergence of amantadine and rimantadine resistant strains of A/chick/Pennsylvania/83 (H5N2) influenza virus. J. Antimicrob. Chemother. 18, Suppl. B, 157–164.PubMedGoogle Scholar
  160. Zlydnikov, D.M., Kubar, O.I., Kovaleva, T.P. & Kamforin, L.E. (1981) . Study of rimantadine in the USSR. Review of the Literature. Rev. Inf. Dis. 3, 408–421.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Hugh J. Field
    • 1
  • Lindsey J. Owen
    • 1
  1. 1.Department of Clinical Veterinary MedicineCambridge UniversityCambridgeUK

Personalised recommendations