Experimental Aspects of Antiviral Pharmacology

  • William H. Prusoff
  • Tai-Shun Lin
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 143)


Experimental pharmacology of antiviral agents include:
  1. 1.

    Design and synthesis of antiviral agents

  2. 2.

    Determination of antiviral activity in cell cultures, experimental animals and humans

  3. 3.

    Study of absorption, distribution, metabolism and excretion

  4. 4.

    Elucidation of the molecular basis for efficacy or toxicity.



Herpes Simplex Antiviral Activity Thymidine Kinase Antiviral Drug Antiviral Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allaudeen, H.S., Descamps, J. and Sehgal, R.K., 1982, Mode of Action of Acyclovir Triphosphate on Herpesviral and Cellular DNA Polymerase, Antiviral Res. 2:123.PubMedCrossRefGoogle Scholar
  2. Balzarini, J., Pauwels, R., Herdewijn, P., De Clercq, E., Cooney, D.A., Kang, G.-J., Dalai, M., Johns, D.G., and Broder, S., 1986, Potent and Selective Anti-HTLV-III/LAV Activity of the 2′,3′-Unsaturated Derivative of 2′, 3′-Dideoxycytidine, Biochem. Biophys. Res. Commun., 140:735.PubMedCrossRefGoogle Scholar
  3. Barry, D.W., Nusinoff-Lehrman, S. and Nixon Ellis, M., 1986, Clinical and Laboratory Experience With Acyclovir-Resistant Herpes Virus, J. Antimicrob. Chemother.18:Suppl. B, 75.PubMedGoogle Scholar
  4. Beyer, W.E.P., Ruigrok, R.W.H., van Driel, H. and Masurel, N., 1986, Influenza Virus Strains With a Fusion Threshold of pH 5.5 or Lower Are Inhibited by Amantadine, Arch. Virol 90:173.PubMedCrossRefGoogle Scholar
  5. Birnbaum, G.I., Giziewicz, J., Gabe, E.J., Lin, T.-S. and Prusoff, W.H., 1987, Structure and Conformation of 3′-Azido-3′-deoxythymidine (AZT), An Inhibitor of the HIV (AIDS) Virus, Canad. J. Chem. In Press.Google Scholar
  6. Biron, K.K., Noblin, J.E., de Miranda, P. and Elion, G.B., 1982, Uptake, Distribution and Anabolism of Acyclovir in Herpes Simplex Virus-Infected Mice, Antimicrob. Agents Chemother. 21:44.PubMedGoogle Scholar
  7. Bleidner, W.E., Harmon, J.B., Hewes, W.E., Lynes, T.E. and Hermann, E.C.; 1965, Absorption, Distribution and Excretion of Amantadine Hydrochloride, J. Pharmacol. Exper. Ther. 150:484.Google Scholar
  8. Boezi, J.A., 1979, The Antiherpes Action of Phosphonoacetate, Pharmac. Ther. 4:231.CrossRefGoogle Scholar
  9. Buettner, W. and Werchau, H.; 1973, Incorporation of 5-Iodo-2′-deoxyuridine (IUdR) into SV40 DNA. Virology 52:553.PubMedCrossRefGoogle Scholar
  10. Bukrinskaya, A.G., Vorkunova, N.K., Kornilayeva, G.V., Narmanbetova, R.A. and Vorkunova, G.K., 1982, Influenza Virus Uncoating in Infected Cells and Effects of Rimantadine, J. Gen. Virol. 60:49.PubMedCrossRefGoogle Scholar
  11. Burns, W.H., Wingaid, J.R., Bender, W.J. and Sarai, R., 1981, Thymidine Kinase Not Required for Antiviral Activity of Acyclovir Against Mouse Cytomegalovirus, J. Virol. 39:889.PubMedGoogle Scholar
  12. Calothy, C., Hirai, K., and Defendi, V., 1973, 5-Bromodeoxyuridine Incorporation Into Simian Virus 40 Deoxyribonucleic Acid. Effects on Simian Virus 40 Replication in Monkey Cells. Virology 55:329.PubMedCrossRefGoogle Scholar
  13. Canonico, P.G., Kende, M., Luscri, B.J. and Huggins, J.W., 1984, In-Vivo Activity of Antivirals Against Exotic RNA Viral Infections, J. Antimicrob. Chemother. 14, Suppl. A:27.PubMedGoogle Scholar
  14. Carmine, A.A., Brogden, R.N., Heel, R.C., Speight, J.M. and Avery, G.S., 1982. Trifluridine, a Review of its Antiviral Activity and Therapeutic Use in the Topical Treatment of Viral Eye Infections. Drugs 23:329.PubMedCrossRefGoogle Scholar
  15. Chen, M.S., Summers, W.P., Walker, J., Summers, W.C. and Prusoff, W.H., 1979. Characterization of Pyrimidine Deoxyribonucleoside Kinase (Thymidine Kinase) and Thymidylate Kinase as a Multifunctional Enzym in Cells Transformed by Herpes Simplex Virus Type 1 and in Cells Infected with Mutant Strains of Herpes Simplex Virus. J. Virol. 30:942.PubMedGoogle Scholar
  16. Chen, M.S., Ward, D.C. and Prusoff, W.H., 1976, Specific Herpes Simplex Virus-induced Incorporation of 5-Iodo-5′-amino-2′,5′-dideoxyuridine into Deoxyribonucleic Acid. J. Biol. Chem. 251:4833.PubMedGoogle Scholar
  17. Chen, S.-T., Estes, J.E., Huang, E.S. and Pagano, J.S., 1978, Epstein-Barr Virus Associated Thymidine Kinase, J. Virol. 26:203.PubMedGoogle Scholar
  18. Cheng, Y.-C., Bastow, K., Frank, K., Nutter, L., Chiou, J.-F. and Grill, S., 1984. Enzymes as Antiviral Targets in: Proceedings Vol. 1, IUPHAR 9 International Congress of Pharmacology. eds. W. Paton, J. Mitchell, P. Turner, Macmillan Press Ltd., London.Google Scholar
  19. Cheng, Y.-C., Dutschman, G.E., Bastow, K.F., Sarngadharan, M.G. and Ting, R.Y.C., 1987, Human Immunodeficiency Virus Reverse Transcriptase: General Properties and its Interactions With Nucleoside Triphosphate Analogs, J. Biol. Chem. 262:2187.PubMedGoogle Scholar
  20. Cheng, Y.-C. and Prusoff, W.H., 1986, Antiviral Chemotherapy, in “CRC Handbook of Chemotherapeutic Agents, Vol. II.” ed. M. Verderame, CRC Press, Boca Raton, Florida.Google Scholar
  21. Colby, B.M., Furman, P.A., Shaw, J.E., Elion, G.D., and Pagano, J.S., 1981, Phosphorylation of Acyclovir [9-(2-Hydroxyethoxymethyl)guanine] in Epstein-Barr Virus-Infected Lymphoblastoid Cell Lines, J. Virol. 38:606.PubMedGoogle Scholar
  22. De Clercq, E., 1985, Targets for tne Antiviral and Antitumor Activities of Nucleoside, Nucleotide and Oligonucleotide Analogues, Nucleosides & Nucleotides 4:3.CrossRefGoogle Scholar
  23. de Miranda, P. and Blum, M.R., 1983, Pharmacokinetics of Acyclovir After Intravenous and Oral Administration, J. Antimicrob. Chemother. 12 Suppl. B:29.PubMedGoogle Scholar
  24. de Miranda, P., Good, S.S., Laskin, O.L., Krasny, H.C., Connor, J.D. and Lietman, P.S., 1981, Disposition of Intravenous Radioactive Acyclovir, Clin. Pharmacol. Therapy 30:662.CrossRefGoogle Scholar
  25. Derse, D. and Cheng, Y.-C., 1981, Herpes Simplex Virus Type 1 DNA Polymerase, J. Biol. Chem. 256:8525.PubMedGoogle Scholar
  26. Derse, D., Cheng, Y.-C., Furman, P.A., St. Clair, M.H. and Elion, G.B., 1981, Inhibition of Purified Human and Herpes Simplex Virus-Induced DNA Polymerases by 9-(2-Hydroxyethoxymethyl)guanine Triphosphate, J. Biol. Chem.256:11447.PubMedGoogle Scholar
  27. Desgranges, C., Razako, G., Drouillet, F., Bricaud, H., Herdewijn, P. and De Clercq, E., 1984, Regeneration of the Antiviral Drug (E)-5-(2-Bromovi-nyl)-2-deoxyuridine, Nucleic Acids Res. 12:20811.CrossRefGoogle Scholar
  28. de Turenne-Tessier, M., Ooka, T., de The, G. and Daillie, J., 1986, Characterization of an Epstein-Barr Virus-Induced Thymidine Kinase, J. Virol. 57:1105.PubMedGoogle Scholar
  29. Dix, R.D., Pereira, L. and Baringer, J.R., 1981, Use of Monoclonal Antibody Directed Against Herpes Simplex Virus Glycoproteins to Protect Mice Against Acute Virus-Induced Neurological Disease, Infection and Immuni-ty 34:192.Google Scholar
  30. Drach, J.C., 1983, Purine Nucleoside Analogs as Antiviral Agents, in “Targets for the Design of Antiviral Agents,” eds. R.T. Walker and E. De Clercq, Plenum Press, London.Google Scholar
  31. Dube, S.K., Gaedicke, G., Kluge, N., Weimann, B.J., Melderis, H., Steinheider, G., Crozier, T., Beckmann, H., Ostertag, W., 1974, in Proceeding of the 4th International Symposium of the Princess Takamatsu Cancer Research Fund, Tokyo, 1973, Differentiation and Control of Malignancy of Tumor Cells, Nakahara, W., Ono, T., Sugimura, T., Sugano, H., Ed.; University of Tokyo Press: Tokyo, p. 99.Google Scholar
  32. Dube, S.K., Pragnell, I.B., Kluge, N., Gaedicke, G., Steinheider, G., Ostertag, W., 1975, Proc. Natl. Acad. Sci. U.S.A. 72:1863.PubMedCrossRefGoogle Scholar
  33. Dyatkina, N.B., Krayevsky, A.A. and Azhayev, A.V., 1986, Aminonucleosides and Their Derivatives, XIV. A General Method for Synthesis of 3′-Azido-2′,3′-dideoxynucleosides, Bioorg. Khim. 12:1048.Google Scholar
  34. Elion, G.B., 1982, Mechanism of Action and Selectivity of Acyclovir, Amer. J. Med., 73, No. 1a:7.PubMedCrossRefGoogle Scholar
  35. Elion, G.B., Furman, P.A., Fyfe, J.A., de Miranda, P., Beauchamp, L. and Schaeffer, H.J., 1977, Selectivity of Action of an Antiherpetic Agent, 9-(2-Hydroxyethoxymethyl)guanine, Proc. Natl. Acad. Sci. U.S.A. 74:5716.PubMedCrossRefGoogle Scholar
  36. Elwell, L.P., Ferone, R., Freeman, G.A., Fyfe, J.A., Hill, J.A., Ray, P.H., Richards, C.A., Singer, S.C., Knick, V.B., Rideout, J.L. and Zimmerman, T.P., 1987, Antibacterial Activity and Mechanism of Action of 3′-Azido-3′-Deoxythymidine (BW A509U), Antimicrob. Agents Chemother. 31:274.PubMedGoogle Scholar
  37. Ericksson, B., Helgstrand, E., Johansson, N.G., Larsson, A., Misiorny, A., Noren, J.O., Philipson, L., Stenberg, K., Stening, G., Stridh, S. and Oberg, B., 1977, Inhibition of Influenza Virus Ribonucleic Acid Polymerase by Ribavirin Triphosphate, Antimicrob. Agents Chemother., 11:946.Google Scholar
  38. Eriksson, B., Larsson, A., Helgstrand, E., Johansson, N.-G., and Oberg, B., 1980, Pyrophosphate Analogues as Inhibitors of Herpes Simplex Virus Type 1 DNA Polymerase, Biochem. Biophys. Acta 607:53.PubMedGoogle Scholar
  39. Farr, B.M., Gwaltney, J.M. Jr., Adams, K.F. and Hayden, F.G., 1984, Intranasal Interferon-Alpha 2 for Prevention of Natural Rhinovirus Colds, Antimicrob. Agents Chemother. 26:31.PubMedGoogle Scholar
  40. Fischer, P.H., Chen, M.S. and Prusoff, W.H., 1980, The Incorporation of 5-Iodo-5′-amino-2′,5′-dideoxyuridine and 5-Iodo-2′-deoxyuridine Into Herpes Simplex DNA, Relationship Between Antiviral Activity and Effects on DNA Structure, Biochem. Biophys. Acta 606:236.PubMedGoogle Scholar
  41. Fiume, L., Bassi, B., Busi, C., Mattioli, D., and Spinosa, G., 1986, Drug Targeting In Antiviral Chemotherapy. A Chemically Stable Conjugate of 9-β-D-Arabinofuranosyl-Adenine-5′-Monophosphate with Lactosaminated Albumin Accomplishes A Selective Delivery of the Drug to Liver Cells, Biochem. Pharmacol. 35:967.PubMedCrossRefGoogle Scholar
  42. Fiume, L., Bassi, B., Busi, C., Mattioli, D. and Wieland, T., 1985, A Study on the Pharmacokinetics of Adenine-9-β -arabinofuranoside 5-Monophos-phate Conjugated with Lactosaminated Albumin, Experientia, 41:1326.PubMedCrossRefGoogle Scholar
  43. Fiume, L., Busi, C. and Mattioli, A., 1983, Targeting of Antiviral Drugs by Coupling With Protein Carriers, FEBS Lett. 153:6.PubMedCrossRefGoogle Scholar
  44. Fox, J.S. and White, D.O., 1980, Delivery of Antiviral Chemotherapeutic Agents to Neurons by Retrograde Axonal Transport, Medical Hypothesis 6:773.CrossRefGoogle Scholar
  45. Furman, P.A., de Miranda, P., St. Clair, M.H. and Elion, G.B., 1981, Metabolism of Acyclovir in Virus-Infected and Uninfected Cells, Antimicrob. Agents Chemother. 20:518.PubMedGoogle Scholar
  46. Furman, P.A., Fyfe, J.A., St. Clair, M.H., Weinhold, K., Rideout, J.L., Freeman, G.A., Nusinoff Lehrman, S., Bolognesi, D.P., Broder, S., Mitsuya, H., and Barry, D.W., 1986, Phosphorylation of 3′-Azido-3′-deoxythymidine and Selective Interaction of the 5′-Triphosphate with Human Immunodeficiency Virus Reverse Transcriptase, Proc. Natl. Acad. Sci. U.S.A. 83:8333.PubMedCrossRefGoogle Scholar
  47. Furman, P.A., St. Clair, M.H., Fyfe, J.A., Rideout, P.M., Keller, P.M. and Elion, G.B., 1979, Inhibition of Herpes Simplex Virus-Induced DNA Polymerase Activity and Viral DNA Replication by 9-(2-Hydroxyethoxyme-thyl)guanine and its Triphosphate, J. Virol. 32:72.PubMedGoogle Scholar
  48. Furman, P.A., St. Clair, M.H. and Spector, T., 1984, Acyclovir Triphosphate Is a Suicide Inactivator of the Herpes Simplex Virus DNA Polymerase, J. Biol Chem. 259:9575.PubMedGoogle Scholar
  49. Fyfe, J.A., Keller, P.M., Furman, P.A., Miller, R.L. and Elion, G.B., 1978, Thymidine Kinase from Herpes Simplex Virus Phosphorylates The New Antiviral Compound, 9-(2-Hydroxyethoxymethyl)guanine, J. Biol. Chem. 253:8721.PubMedGoogle Scholar
  50. Gangarosa, L.P., Hill, J.M., Thompson, B.L., Leggett, C. and Rissing, J.P., 1986, Iontophoresis of Vidarabine Monophosphate for Herpes Orolabialis, J. Infect. Dis., 154:930.PubMedCrossRefGoogle Scholar
  51. Gangarosa, L.P., Park, N.H., Kwon, B.S. and Hill, J.M., 1982, Iontophoretic Application of Antiviral Drugs. In “Herpesvirus: Clinical, Pharmacological and Basic Aspects,” Eds. H. Shiota, Y.-C. Cheng and W.H. Prusoff, Excerpta Medica International Congress Series 571:201.Google Scholar
  52. Gangemi, J.D., Nachtigal, M., Barnhart, D., Krech, L. and Jani, P., 1987, Therapeutic Efficacy of Liposome-Encapsulated Ribavirin and Muramye Tripeptide In Experimental Infection with Influenza or Herpes Simplex Virus, J. Infect. Dis., 155:510.PubMedCrossRefGoogle Scholar
  53. Gilbert, B.E. and Knight, V., 1986, Biochemistry and Clinical Applications of Ribavirin, Antimicrob. Agents Chemother. 30:201.Google Scholar
  54. Goldanskii, V.I., Avetisov, V.A. and Kuz’min, V.V., 1986, Chiral Purity of Nucleosides as a Necessary Condition of Complementarity, FEBS Lett., 207:181.PubMedCrossRefGoogle Scholar
  55. Goswami, B.B., Borek, E., Sharma, O.K., Fujitaki, and Smith, R.A., 1979, The Broad Spectrum Antiviral Agent Ribavirin Inhibits Capping of mRNA, Biochem. Biophys. Res. Commun. 89:830.PubMedCrossRefGoogle Scholar
  56. Goz, B., 1978, The Effects of Incorporation of 5-Halogenated Deoxyuridines Into the DNA of Eukaryote Cells. Pharmac. Rev. 29:249.Google Scholar
  57. Gregoriadis, G., 1973, Drug Entrapment in Liposomes, FEBS Letters 36:292.PubMedCrossRefGoogle Scholar
  58. Gregoriadis, G. and Neerunjun, E.D., 1975, Homing of Liposomes to Target Cells, Biochem. Biophys. Res. Comm. 65:537.PubMedCrossRefGoogle Scholar
  59. Hall, C.B., McBride, J.T., Walsh, E.E., Bell, D.M., Gala, C.L., Hildreth, S., Ten Eck, L.G. and Hall, W.J., 1983, Aerosolized Ribavirin Treatment of Infants With Respiratory Syncytial Viral Infections, New England J. Med. 308:1443.CrossRefGoogle Scholar
  60. Hall, C.B., Walsh, E.E., Hruska, J.F., Betts, R.F. and Hall, W.J., 1983, Ribavirin Treatment of Experimental Respiratory Viral Infection. A Controlled Double-Blind Study In Young Adults, J. Amer. Med. Assoc. 249:2666.CrossRefGoogle Scholar
  61. Hartshorn, K.L., Vogt, M.W., Chou, T.-C., Blumberg, R.S., Byington, R., Schooley, R.T. and Hirsch, M.S., 1987, Synergistic Inhibition of Human Immunodeficiency Virus In Vitro by Azidothymidine and Recombinant Alpha A Interferon, Antimicrob. Agents Chemother. 31:168.PubMedGoogle Scholar
  62. Haschke, R.H., Ordronneau, J.M. and Bunt, A.H., 1980, Preparation and Retrograde Axonal Transport of an Antiviral Drug/Horseradish Peroxidase Conjugate, J. Neurochem. 35:1431.PubMedCrossRefGoogle Scholar
  63. Hayden, F.G., Minocha, A., Spyker, D.A. and Hoffman, H.E., 1985, Comparative Single-Dose Pharmacokinetics of Amantadine Hydrochloride and Rimantadine Hydrochloride in Young and Elderly Adults. Antimicrob. Agents and Chemother. 28:216.Google Scholar
  64. Heidelberger, C. and King, D.H., 1979, Trifluorothymidine. Pharmac. Ther. 6:427.CrossRefGoogle Scholar
  65. Heidelberger, C., Parsons, D.G. and Remy, D.C., 1964, Synthesis of 5-Tri-fluoromethyluracil and 5-Trifluoromethyl-2′-deoxyuridine. J. Med. Chem. 7:1.PubMedCrossRefGoogle Scholar
  66. Helgstrand, E., Eriksson, B., Johansson, N.G., Lannero, B., Larsson, A., Misiorny, A., Noren, J.O., Sjoberg, B., Stenberg, K., Stening, G., Stridh, S., Oberg, B., Alenius, S. and Philipson, L., 1978, Trisodium Phosphonoformate, a New Antiviral Compound, Science 201:819.PubMedCrossRefGoogle Scholar
  67. Helgstrand, E., Flodh, H., Lernestedt, J.-O., Lundstrom, J. and Oberg, B., 1980, Trisodium Phosphonoformate: Antiviral Activities, Safety Evaluation and Preliminary Clinical Results. In “Developments in Antiviral Therapy,” eds. L.H. Collier and J. Oxford, Academic Press, London.Google Scholar
  68. Henderson, N.L., 1983, Recent Advances in Drug Delivery System Technology, Ann. Rev. Med. Chem. 18:275.CrossRefGoogle Scholar
  69. Hirt, B., 1966, Evidence for Semiconservative Replication of Circular Polyoma DNA, Proc. Natl. Acad. Sci. U.S.A. 55:997.PubMedCrossRefGoogle Scholar
  70. Hoffman, C.E., 1980, Structure, Activity and Mode of Action of Amantadine HCl and Related Compounds, Antibiot. Chemother. 27:233.Google Scholar
  71. Horwitz, J.P., Chua, J. and Noel, M., 1964, Nucleosides V. The Monomysyl-ates of 1-(2′-deoxy-β-D-lyxofuranosyl)thymine, J. Org. Chem. 29:2076.CrossRefGoogle Scholar
  72. Iwasaki, Y., Yamamoto, T., Konno, H., Iizuka, H. and Kudo, H., 1986, Eradication of Herpes Simplex Virus Persistence in Rat Trigeminal Ganglia by Retrograde Axoplasmic Transport, J. Virol. 59:242.PubMedGoogle Scholar
  73. Jährling, P.B., Hesse, R.A., Eddy, G.A., Johnson, K.M., Callis, R.F., Stephen, E.L., 1980, Lassa Fever Virus Infection of Rhesus Monkeys: Pathogenesis and Treatment With Ribavirin, J. Infect. Dis. 141:580.PubMedCrossRefGoogle Scholar
  74. Jansons, V.K. and Mallett, P.L., 1981, Targeted Liposomes: A Method for Preparation and Analysis, Analytical Biochem. 111:54.CrossRefGoogle Scholar
  75. Juel-Jensen, B.E., MacCallum, F.O. and MacKenzie, A.M.R., 1970, Treatment of Zoster With Idoxuridine In Dimethyl Sulphoxide: Results of Two Double Blind Controlled Trials, Brit. Med. J. 4:776.PubMedCrossRefGoogle Scholar
  76. Juliano, R.L., 1981, Liposomes as a Drug Delivery System, Trends in Pharm. Sci. 2:39.CrossRefGoogle Scholar
  77. Kato, M. and Eggers, H.J., 1969, Inhibition of Uncoating of Fowl Plague Virus by 1-Adamantanamine Hydrochloride, Virology 37:632.PubMedCrossRefGoogle Scholar
  78. Keller, P.M., McKee, and Fyfe, J.A., 1985, Cytoplasmic 5′-Nucleotidase Catalyzes Acyclovir Phosphorylation, J. Biol. Chem. 260:8664.PubMedGoogle Scholar
  79. Kende, M., Alving, C.R., Rill, W.L., Swartz, G.M. Jr. and Canonico, P.G., 1985, Enhanced Efficacy of Liposome-Encapsulated Ribavirin Against Rift Valley Fever Virus Infection in Mice, Antimicrob. Agents Chemother., 27:903.PubMedGoogle Scholar
  80. Koff, W.C. and Knight, V., 1979, Inhibition of Influenza Virus Uncoating by Rimantadine Hydrochloride, J. Virology 31:261.PubMedGoogle Scholar
  81. Krenitsky, T.A., Hall, W.W., de Miranda, P., Beauchamp, L.M., Schaeffer, H.J., and Whiteman, P.D., 1984, 6-Deoxyacyclovir: A Xanthine Oxidase-Activated Prodrug of Acyclovir, Proc. Natl. Acad. Sci. U.S.A. 81:3209.PubMedCrossRefGoogle Scholar
  82. Kristensson, K., 1978, Retrograde Transport of Macromolecules in Axons, Annual Rev. Pharm. and Tox. 18:97.CrossRefGoogle Scholar
  83. Langen, P., 1975, “Antimetabolites of Nucleic Acid Metabolism.” Gordon and Breach, New York.Google Scholar
  84. Larder, B.A. and Darby, G., 1984, Virus Drug-Resistance: Mechanisms and Consequences, Antiviral Res. 4:1.PubMedCrossRefGoogle Scholar
  85. Larsson, A., Sundqvist, A. and Parnerud, A.-M., 1986, Inhibition of Herpes Simplex Virus-Induced DNA Polymerases and Cellular DNA Polymerase α by Triphosphates of Acyclic Guanosine Analogs, Molec. Pharmacol. 29:614.Google Scholar
  86. Laskin, O.L., 1984, Acyclovir, Rational Drug Therapy 18:Number 5.Google Scholar
  87. Laskin, O.L., 1983, Clinical Pharmacokinetics of Acyclovir, Clin. Pharmacokinetics 8:187.CrossRefGoogle Scholar
  88. Lee, W.W., Benitez, A., Goodman, L., and Baker, B.R., 1960, Potential Anticancer Agents XI. Synthesis of the ß-anomer of 9-(D-arabinofurano-syl)adenine, J. Am. Chem. Soc. 82:2648.CrossRefGoogle Scholar
  89. Lemaitre, M., Bayard, B. and Lebleu, B., 1987, Specific Antiviral Activity of a Poly(L-lysine)-conjugated Oligodeoxyribonucleotide Sequence Complementary to Vesicular Stomatitis Virus N-Protein mRNA Intitiation Site, Proc. Natl. Acad. Sci. U.S.A., 84:648.PubMedCrossRefGoogle Scholar
  90. Leonard, M.F., Kumar, A., Murray, D.L., Beaman, D.C., 1987, Inhibitory Effect of AzoneR (1-Dodecylazacycloheptan-2-one) on Herpes Simplex Viruses, In Vivo and In Vitro Studies, Chemother., 33:151.CrossRefGoogle Scholar
  91. Lin, T.-S., Chen, M.S., Melaren, C., Gao, Y.S., Ghazzouli, I. and Prusoff, W.H., 1987, Synthesis and Antiviral Activity of Various 3′-Azido, 3′-Amino, 2′,3′-Unsaturated and 2′,3′-Dideoxy Analogues of Pyrimidine Deoxyribonucleosides Against Retroviruses, J. Med. Chem., 30:440.PubMedCrossRefGoogle Scholar
  92. Lin, T.-S. and Prusoff, W.H., 1978, Synthesis and Biological Activity of Several Amino Analogs of Thymidine, J. Med. Chem. 21:109.PubMedCrossRefGoogle Scholar
  93. Lin, T.-S., Schinazi, R.F., Chen, M.S., Kinney-Thomas, E. and Prusoff, W.H., 1987, Antiviral Activity of 2′,3′-Dideoxycytidin-2′-ene (2′,3′-Dideoxy-2′,3′-didehydrocytidine) Against Human Immunodeficiency Virus In Vitro, Biochem. Pharmacol. 36:311.PubMedCrossRefGoogle Scholar
  94. Littler, E., Zeuthen, J., McBride, A.A., Trost-Sorenson, E., Powell, K.L., Walsh-Arrand, J.E. and Arrand, J.R., 1986, Identification of an Ep-stein-Barr Virus-coded Thymidine Kinase, The EMBO J. 5:1959.Google Scholar
  95. Lok, A.S.F., Wilson, L.A. and Thomas, H.C., 1984, Neurotoxicity Associated with Adenine Arabinoside Monophosphate In The Treatment of Chronic Hepatitis B Virus Infection, J. Antimicrob. Chemother. 14:93.PubMedCrossRefGoogle Scholar
  96. Markley, J.L., Westler, W.M., Chan, T.-M., Kojiro, C.L. and Ulrich, E.L., 1984, Two-Dimensional NMR Approaches to the Study of Protein Structure and Function, Fed. Proc. 43:2648.PubMedGoogle Scholar
  97. Matsumura, K., Fujimoto, M., and Mitsui, Y., 1973, Micro-autographic Studies on Incorporation of 5-Iodo-2′-deoxyuridine Into Herpes Simplex Virus, Jap. J. Ophthal. 17:125.Google Scholar
  98. McCormick, J.B., King, I.J., Webb, P.A., Scribner, C.L., Craven, R.B., Johnson, K.M., Elliott, L.H. and Belmont-Williams, R., 1986, Lassa Fever, Effective Therapy with Ribavirin, New Engl. J. Med. 314:20.PubMedCrossRefGoogle Scholar
  99. McGuirt, P.V., Shaw, J.E., Elion, G.B. and Furman, P.A., 1984, Identification of Small DNA Fragments Synthesized in Herpes Simplex Virus-Infected Cells In the Presence of Acyclovir, Antimicrob. Agents Chemother. 25:507.Google Scholar
  100. Medical Letter, 1986, Azidothymidine for AIDS, 28:107.Google Scholar
  101. Medical Letter, 1986, Ribavirin (Virazole), 28:46.Google Scholar
  102. Miller, J.P., Kigwana, L.J., Streeter, D.G., Robins, R.K., Simon, L.N. and Roboz, J., 1977, The Relationship Between the Metabolism of Ribavirin and its Proposed Mechanism of Action, Ann. N.Y. Acad. Sci. 284:211.PubMedCrossRefGoogle Scholar
  103. Miller, W.H. and Miller, R.L., 1980, Phosphorylation of Acyclovir (Acyclo-guanosine)monophosphate by GMP Kinase, J. Biol. Chem. 255:7204.PubMedGoogle Scholar
  104. Mitsuya, H. and Broder, S., 1986, Inhibition of the In Vitro Infectivity and Cytopathic Effect of Human T-lymphotropic Virus Type III/Lymphadenopathy-Associated Virus (HTLV-III/LAV) by 2′, 3′ -dideoxynucleosides, Proc. Natl. Acad. Sci. U.S.A. 83:1911.PubMedCrossRefGoogle Scholar
  105. Mitsuya, H. and Broder, S., 1987, Strategies for Antiviral Therapy in AIDS, Nature 325:773.PubMedCrossRefGoogle Scholar
  106. Mitsuya, H., Weinhold, K.J., Furman, P.A., St. Clair, M.H., Nusinoff Lehrman, S., Gallo, R.C., Bolognesi, D., Barry, D.W., and Broder, S., 1985, 3′-Azido-3′-deoxythymidine (BW A509U): An Antiviral Agent That Inhibits the Infectivity and Cytopathic Effect of Human T-lymphotropic Virus Type III/Lymphadenopathy-Associated Virus In Vitro, Proc. Natl. Acad. Sci. U.S.A. 82:7096.PubMedCrossRefGoogle Scholar
  107. Nakayama, K., Ruth, J.L., and Cheng, Y.-C., 1982, Differential Effect of Nucleoside Analog Triphosphates on Ribonucleotide Reductase From Uninfected and Herpes Simplex Virus-Infected HeLa Cells, J. Virol. 43:325.PubMedGoogle Scholar
  108. North, T.W. and Cohen, S., 1979, Aranucleosides and Aranucleotides in Viral Chemotherapy, Pharmac. Ther. 4:81.CrossRefGoogle Scholar
  109. Nylen, P., 1924, Beitrag zur Kenntnis der Organischen Phosphor-Verbindungen, Chem. Ber. 57:1023.Google Scholar
  110. Oberg, B., 1983, Antiviral Effects of Phosphonoformate (PFA, Foscarnet Sodium), Pharmac. Ther. 19:387.CrossRefGoogle Scholar
  111. Ostertag, W., Cole, T., Crozier, T., Gaedicke, G., Kind, J., Kluge, N., Krieg, J.C., Roselser, G., Steinheider, G., Weimann, B.J., Dube, S.K. in Proceeding of the 4th International Symposium of the Princess Taka-matsu Cancer Research Fund, Tokyo 1973, Differentiation and Control of Malignancy of Tumor Cells, Nakahara, W., Ono, T., Sugimura, T., Sugano, H., Ed.; University of Tokyo Press: Tokyo, 1974, p. 485.Google Scholar
  112. Ostertag, W., Roesler, G., Kreig, C.J., Cole, T., Crozier, T., Gaedicke, G., Steinheider, G., Kluge, N., Dube, S.K., 1974, Proc. Natl. Acad. Sci. U.S.A. 71:4980.PubMedCrossRefGoogle Scholar
  113. Ostrander, M. and Cheng, Y.-C., 1980, Properties of Herpes Simplex Virus Type 1 and Type 2 DNA Polymerase, Biochem. Biophys. Acta 60 9:232.Google Scholar
  114. Otto, M.J., Goz, B. and Prusoff, W.H., 1984, Antiviral Activity of Iodinated Pyrimidine Deoxyribonucleosides. In “Antiviral Drugs and Interferon: The Molecular Basis of Their Activity.” ed. Y.C. Becker, Martinus Nijhof, Hingham, MA.Google Scholar
  115. Otto, M.J., Lee, J.J. and Prusoff, W.H., 1982, Effects of Nucleoside Analogues on the Expression of Herpes Simplex Type 1 Induced Protein, Antiviral Res. 2:267.PubMedCrossRefGoogle Scholar
  116. Oxford, J.S. and Gailbraith, A., 1980, Antiviral Activity of Amantadine: A Review of Laboratory and Clinical Data, Pharmac. Ther. 11:181.CrossRefGoogle Scholar
  117. Park, N.H., Gangarosa, L.P., Kwon, B.S., Hill, J.M., 1978, Iontophoretic Application of Adenine Arabinoside Monophosphate to Herpes Simplex Virus Type-I-infected Hairless Mouse Skin, Antimicrob. Agents Chemother. 14:604.Google Scholar
  118. Prusoff, W.H., Bakhle, Y.S. and McCrea, J.F., 1963, Incorporation of 5-Iodo-2′-deoxyuridine Into the Deoxyribonucleic Acid of Vaccinia Virus, Nature, Lond. 199:1310.CrossRefGoogle Scholar
  119. Prusoff, W.H., Chen, M.S., Fischer, P.H., Lin, T.-S., Mancini, W.R., Otto, M.J., Shiau, G.T., Schinazi, R.F. and Walker, J., 1984, Antiviral Iodinated Pyrimidine Deoxyribonucleosides: 5-Iodo-2′-Deoxyuridine; 5-Iodo-2′-Deoxycytidine; 5-Iodo-5′-Amino-2′, 5′-Dideoxyuridine. In “Internat. Encyclopedia of Pharmacol, and Therap., Section III, Viral Chemotherapy”, Ed. D. Shugar. Pergamon Press, N.Y.Google Scholar
  120. Prusoff, W.H., Chen, M.S., Fischer, P.H., Lin, T.-S., Shiau, G.T., Schinazi, R.F. and Walker, J., 1979, Pharmac. Ther. 7:1.CrossRefGoogle Scholar
  121. Prusoff, W.H. and Goz, B., 1975, Halogenated Pyrimidine Deoxyribonucleosides, in “Antineoplastic and Immunosuppressive Agents.” Vol. 2. eds. A.C. Sartorelli and D.G. Johns. Springer, Berlin.Google Scholar
  122. Prusoff, W.H., Lin, T.-S. and Zucker, M., 1986, Potential Targets for Antiviral Chemotherapy, Antiviral Res. 6:311.PubMedCrossRefGoogle Scholar
  123. Prusoff, W.H. and Otto, M.J., 1983, Problems in the Pharmacology and Pharmacokinetics of Antivirals, in “Problems of Antiviral Therapy,” eds. C.H. Stuart-Harris and J. Oxford. Academic Press, New York.Google Scholar
  124. Rees, P.J., Selby, P., Prentice, H.G., Whiteman, P.D. and Grant, D.M., 1986, A5I5U: A Prodrug of Acyclovir With Increased Oral Bioavailability, J. Antimicrob. Chemother. 18:Suppl. B, 215.PubMedGoogle Scholar
  125. Reinke, C.M., Drach, J.C., Shipman, C.Jr. and Weissbach, A., 1978, in “Oncogenesis and Herpesviruses III” (Part 2). eds. G. De The, W. Henle, and F. Rapp. IARC, Lyon, France.Google Scholar
  126. Reno, J.M., Lee, L.F. and Boezi, J.A., 1978, Inhibition of Herpesvirus Replication and Herpesvirus-Induced Deoxyribonucleic Acid Polymerase by Phosphonoformate, Antimicrob. Agents Chemother. 13:188.PubMedGoogle Scholar
  127. Richman, D.D., Yazaki, P. and Hostetier, K.Y., 1982, The Intracellular Distribution and Antiviral Activity of Amantadine, Virology, 112:81.CrossRefGoogle Scholar
  128. Robins, R.K., 1986, Chem. Engineer. News Jan. 27:28.CrossRefGoogle Scholar
  129. Rossman, M.G., 1985, Cited in Chem. Engineer. News Sept 16:81.Google Scholar
  130. Saffran, M., Kumar, G.S., Savariar, C., Burnheim, J.C., Williams, F. and Neckers, D.C., 1986, A New Approach to the Oral Administration of Insulin and Other Peptide Drugs, Science 233:1081.PubMedCrossRefGoogle Scholar
  131. Scheinberg, D.A. and Strand, M., 1982, Leukemic Cell Targeting and Therapy by Monoclonal Antibody in a Mouse Model System, Cancer Res. 42:44.PubMedGoogle Scholar
  132. Schiek, W. and Schiek, E., 1969, Untersuchung Uber Infektioses Bromodesoxy-uridinhaltiges Herpes Virus Hominis. Bistimmung der Dichte und der Sedimentationkonstanten is CsCl-H2O Dichtergradienten, Arch. ges. Virusforsch 28:229.PubMedCrossRefGoogle Scholar
  133. Schlegel, R., Dickson, R.B., Willingham, M.C. and Pastan, I.H., 1982, Amantadine and Dansylcadaverine Inhibit Vesicular Stomatitis Virus Uptake and Receptor-Mediated Endocytosis of α2 -Macroglobulin, Proc. Natl. Acad. Sci. U.S.A. 79:2291.PubMedCrossRefGoogle Scholar
  134. Senyei, A.E. and Widder, K.J., 1981, Drug Targeting: Magnetically Responsive Albumin Microspheres— A Review of the System to Date, Gyn. Onc. 12:1.CrossRefGoogle Scholar
  135. Shannon, W.M., 1984, Mechanisms of Action and Pharmacology: Chemical Agents, in “Antiviral Agents and Viral Diseases of Man,” Eds. G.J. Galasso, T.C. Merigan and R.A. Buchanon, Raven Press, New York.Google Scholar
  136. Shaw, J.E., 1980, Drug Delivery Systems, Ann. Rept. Med. Chem. 15:302.CrossRefGoogle Scholar
  137. Sidwell, R.W., Huffman, J.H., Call, E., Alaghamandan, H., Dixon, G.J., 1987, Effect of Vidarabine in Dimethyl Sulfoxide Vehicle on Type 1 Herpes-virus-induced Cutaneous Lesions in Laboratory Animals, Chemother., 33:141.CrossRefGoogle Scholar
  138. Sidwell, R.W., Robins, R.K. and Hillyard, I.W., 1979, Ribavirin: An Antiviral Agent, Pharmacol. Ther. 6:123.PubMedCrossRefGoogle Scholar
  139. Skehel, J.J., Baley, P.M., Brown E.B., Martin, S.R., Waterfield, M.D., White, J.R., Wilson, I.A. and Wiley, D.C., 1982, Changes in the Conformation of Influenza Virus Hemagglutinin and the pH Optimum of the Virus-Mediated Membrane Fusion, Proc. Natl. Acad. Sci. U.S.A. 79:968.PubMedCrossRefGoogle Scholar
  140. Skehel, J.J., Hay, A.J. and Armstrong, J.A., 1977, On the Mechanism of Inhibition of Influenza Virus Replication by Amantadine Hydrochloride, J. Gen. Virol. 38:97.CrossRefGoogle Scholar
  141. Smee, D.F. and Mathews, T.R., 1986, Metabolism of Ribavirin In Respiratory Syncytial Virus-Infected and Uninfected Cells, Antimicrob. Agents Chemother. 30:117.PubMedGoogle Scholar
  142. Smith, C.C., Aurelian, L., Reddy, M.P., Miller, P.S. and Ts’o, P.O.P., 1986, Antiviral Effect of an Oligo(Nucleoside Methylphosphonate) Complementary to the Splice Junction of Herpes Simplex Virus Type 1 Immediate Early Pre-mRNAs 4 and 5, Proc. Natl. Acad. Sci. U.S.A., 83:2787.PubMedCrossRefGoogle Scholar
  143. Smith, R.A. and Kirkpatrick, W., eds., 1980, “Ribavirin, A Broad Spectrum Antiviral Agent,” Academic Press, New York.Google Scholar
  144. Smith, R.A., Knight, V., Smith, J.A.D., eds., 1984, “Clinical Applications of Ribavirin”, Academic Press, New York, New York.Google Scholar
  145. Smolin, G., Okumoto, M., Feiler, S. and Condon, D., 1981, Idoxuridineliposome Therapy for Herpes Simplex Keratitis, Am. J. Opthal. 91:220.Google Scholar
  146. Sommadossi, J.P., Barnes, D.W., Miller, L.R., Markiewicz, M.A. and Whitley, R.J., 1986, Novel Pharmacologic Strategies in the Treatment of Life-Threatening Infections: Clinical Experience with 9-(1,3-Dihydroxy-2-Propoxy-Methyl)-Guanine (DHPG), Abstract: Amer. Fed. Clin. Res., In Press.Google Scholar
  147. Spruance, S.L., McKeough, B. and Cardinal, J.R., 1984, Penetration of Guinea Pig Skin by Acyclovir in Different Vehicles and Correlation With the Efficacy of Topical Therapy of Experimental Cutaneous Herpes Simplex Virus Infection, Antimicrob. Agents Chemother. 25:10.PubMedGoogle Scholar
  148. Stegman, T., Hoekstra, D., Scherphof, G. and Wilschut, J., 1986, Fusion Activity of Influenza Virus. A Comparison Between Biological and Artificial Target Membrane Vesicles, J. Biol. Chem. 261:10966.Google Scholar
  149. Streeter, D.G., Simon, L.N., Robins, R.K. and Miller, J.P., 1974, The Phosphorylation of Ribavirin by Deoxyadenosine Kinase from Rat Liver. Differentiation Between Adenosine and Deoxyadenosine Kinase, Biochemistry 13:4543.PubMedCrossRefGoogle Scholar
  150. Streeter, D.G., Witkowski, J.T., Khare, G.P., Sidwell, R.W., Bauer, R.J., Robins, R.K. and Simon, L.N., 1973, Mechanism of Action of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a New Broad-Spectrum Antiviral Agent, Proc. Natl. Acad. Sci. U.S.A. 70:1174.PubMedCrossRefGoogle Scholar
  151. Sundquist, B. and Oberg, B., 1979, Phosphonoformate Inhibits Reverse Transcriptase, J. Gen. Virol. 45:273.PubMedCrossRefGoogle Scholar
  152. Toltzis, P. and Huang, A.S., 1986, Effect of Ribavirin on Macromolecular Synthesis in Vesicular Stomatitis Virus-Infected Cells, Antimicrob. Agents Chemother. 29:1010.PubMedGoogle Scholar
  153. Toulme, J.J., Krisch, H.M., Loreau, N., Thuong, N.T. and Helene, C., 1986, Specific Inhibition of mRNA Translation by Complementary Oligonucleotides Covalently Linked to Intercalating Agents, Proc. Natl. Acad. Sci. U.S.A., 83:1227.PubMedCrossRefGoogle Scholar
  154. Turenne-Tessier, M., Ooka, G., Daillie, J., 1986, Characterization of an Epstein-Barr Virus-Induced Thymidine Kinase, J. Virol., 57:1105.PubMedGoogle Scholar
  155. Tuttle, J.V. and Krenitsky, T.A., 1984, Effects of Acyclovir and Its Metabolites on Purine Nucleoside Phosphorylase, J. Biol. Chem. 259:4065.PubMedGoogle Scholar
  156. Vince, R. and Daluge, S., 1977, Carbocyclic Arabinosyladenine, an Adenosine Deaminase-Resistant Antiviral Agent, J. Med. Chem. 20:612.PubMedCrossRefGoogle Scholar
  157. Vogt, M.W., Hartshorn, K.L., Furman, P.A., Chou, T.-C., Fyfe, J.A., Coleman, L.A., Crumpacker, C., Schooley, R.T. and Hirsch, M.S., 1987, Ribavirin Antagonizes the Effect of Azidothymidine on HIV Replication, Science 235:1376.PubMedCrossRefGoogle Scholar
  158. Vrang, L., Bazin, H., Remaud, G., Chattopadhyaya and Oberg, B., 1987, Inhibition of the Reverse Transcriptase from HIV by 3′ -Azido-3′-deoxythymi-dine Triphosphate and Its Threo Analogue, Antiviral Res. 7:139.PubMedCrossRefGoogle Scholar
  159. Wahren, B., Larsson, A., Ruden, V., Sundquist, A., and Solver, E., 1987, Acyclic Guanosine Analogs as Inhibitors of Human Cytomegalovirus, Antimicrob. Agents Chemother. 31:317.PubMedGoogle Scholar
  160. Weinstein, J.N., Magin, R.L., Cysyk, R.L. and Zaharko, D.S., 1980, Treatment of Solid L1210 Murine Tumours With Local Hyperthermia and Temperature Sensitive Liposomes Containing Methotrexate, Cancer Res. 40:1388.PubMedGoogle Scholar
  161. Welch, A.D. and Prusoff, W.H., 1960, A Synopsis of Recent Investigations of 5-Iodo-2′-Deoxyuridine, Cancer. Chemother. Rept. 6:29.Google Scholar
  162. Widder, K.J., Morris, R.M., Poore, G., Howard, Jr., D.P. and Senyei, A.E., 1981, Tumor Remission in Yoshida Sarcome-bearing Rats by Selective Targeting of Magnetic Albumin Microspheres Containing Doxorubicin, Proc. Natl. Acad. Sci. U.S.A. 78:579.PubMedCrossRefGoogle Scholar
  163. Wigand, R. and Klein, W., 1974, Properties of Adenovirus Substituted with Iododeoxyuridine. Arch, qes. Virusforsch. 45:298.CrossRefGoogle Scholar
  164. Yarchoan, R., Brouwers, P., Spitzer, A.R., Grafman, J., Safai, B., Perno, C.F., Larson, S.M., Berg, G., Fischl, M.A., Wichman, A., Thomas, R.V., Brunetti, A., Schmidt, P.J., Myers, C.E., Broder, S., 1987, Response of Human-Immunodeficiency-Virus-Associated Neurological Disease to 3′-Azido-3′-deoxythymidine, Lancet i:132.CrossRefGoogle Scholar
  165. Yarchoan, R., Weinhold, K.J., Lyerly, H.K. Lyerly, Gelmann, E., Blum, R.M., Shearer, G.M., Mitsuya, H., Collins, J.M., Myers, C.E., Klecker, R.W., Markham, P.D., Durack, D.T., Nusinoff Lehrman, S., Barry, D.W., Fischl, M.A., Gallo, R.C., Bolognesi, D.P., Broder, S., 1986, Administration of 3′ -Azido-3′-deoxythymidine, an Inhibitor of HTLV-III/LAV Replication, to Patients With AIDS or AIDS-related Complex, The Lancet i:575.CrossRefGoogle Scholar
  166. Yatvin, M.B., Muhlensiepen, H., Porschen, W., Weinstein, J.N. and Feinendegen, L.G., 1981, Selective Delivery of Liposome-associated Cis-dichlor-odiamineplatinum (II) by Heat and its Influence on Tumor Drug Uptake and Growth, Cancer Res. 41:1602.PubMedGoogle Scholar
  167. Yatvin, M.B., Weinstein, J.N. and Blummenthal, R., 1978, Design of Liposomes for Enhanced Local Release of Drugs by Hyperthermia, Science 202:1290.PubMedCrossRefGoogle Scholar
  168. Zamecnik, P.C., Goodchild, J., Taguchi, Y. and Sarin, P.S., 1986, Inhibition of Replication and Expression of Human T-Cell Lymphotropic Virus Type III in Cultured Cells by Exogenous Synthetic Oligonucleotides Complementary to Viral RNA, Proc. Natl. Acad. Sci. U.S.A., 83:4143.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • William H. Prusoff
    • 1
  • Tai-Shun Lin
    • 1
  1. 1.Department of PharmacologyYale University School of MedicineNew HavenUSA

Personalised recommendations