Animal Models as Assay Systems for the Development of Antivirals

  • Earl R. Kern
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 143)


The importance of experimental viral infections in animal models for development and testing of new antiviral agents prior to their use in man should not be understated. While tissue culture systems are of great value in determining if a new drug has activity against a particular virus, these systems should not be used as indicators or predictors of activity in humans. Only where suitable animal models are not available, should a compound be taken from tissue culture directly into human trials. Although one can legitimately argue that most, if not all, animal model infections are not identical to the human disease, it can be demonstrated that a compound does in fact have activity in an in vivo system and early indications of its antiviral activity, tissue distribution, metabolic disposition, pharmacokinetics, and acute toxicity can be realized. Importantly, all of these parameters of drug pharmacodynamics can be correlated with inhibition of viral replication in target organs. Additionally, our understanding of the pathogenesis of many viral infections, the response of the host to infection and interaction between the infection, the host’s response, and a therapeutic agent has been enhanced greatly through the use of animal model systems.


Genital Herpes Herpes Simplex Virus Infection Simian Varicella Virus Lassa Fever Adenine Arabinoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Whitley, S.-J. Soong, R. Dolin, G.J. Galasso, L.T. Ch’ien, C.A. Alford, and the Collaborative Study Group. Adenine arabinoside therapy of biopsy-proved herpes simplex encephalitis. N. Engl. J. Med. 297:289 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    R.J. Whitley, S.-J. Soong, M.S. Hirsch, A.W. Karchmer, R. Dolin, G. Galasso, J.K. Dunnick, C.A. Alford, and the NIAID Collaborative Antiviral Study Group. Herpes simplex encephalitis. Vidarabine therapy and diagnostic problems. N. Engl. J. Med. 304:313 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    E.R. Kern, J.T. Richards, L.A. Glasgow, J.C. Overall, Jr., and P. De Miranda. Optimal treatment of herpes simplex virus encephalitis in mice with oral acyclovir. Symposium on acyclovir. Am. J. Med. 73:125 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    R.J. Whitley, C.A. Alford, M.S. Hirsch, R.T. Schooley, J.P. Luby, F.Y. Aoki, D. Hanley, A.J. Nahmias, S.-J. Soong, and the NIAID Collaborative Antiviral Study Group. N. Engl. J. Med. 314:144 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    E.R. Kern, J.T. Richards, J.C. Overall, Jr., and L.A. Glasgow. Alteration of mortality and pathogenesis of three experimental Herpesvirus hominis infections of mice with adenine arabinoside 5′- monophosphate, adenine arabinoside, and phosphonoacetic acid. Antimicrob. Agents Chemother. 13:53 (1978).PubMedGoogle Scholar
  6. 6.
    E.R. Kern, J.C. Overall, Jr., and L.A. Glasgow. Herpesvirus hominis infection in newborn mice: comparison of the therapeutic efficacy of 1-β-D-Arabinofuranosylcytosine and 9–3-D-Arabinofuranosyladenine. Antimicrob. Agents Chemother. 7:587 (1975).PubMedGoogle Scholar
  7. 7.
    R.J. Whitley, A.J. Nahmias, S.-J. Soong, G.T. Galasso, C.L. Fleming, and C.A. Alford. Vidarabine therapy of neonatal herpes simplex virus infections. Pediatrics 66:495 (1980).PubMedGoogle Scholar
  8. 8.
    R.J. Whitley, A. Yeager, P. Kartus, Y. Bryson, J.D. Connor, A. Nahmias, and S.-J. Soong. Neonatal herpes simplex virus infection. Follow-up evaluation of vidarabine therapy. Pediatrics 72:778 (1983).PubMedGoogle Scholar
  9. 9.
    W.R. Hubler, T.D. Felber, D. Troll, and M. Jarratt. Guinea pig model for cutaneous herpes simplex virus infection. J. Invest. Dermatol 62:92 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    T.W. Schaefer, M. Lieberman, J. Everitt, and P. Came. Cutaneous herpes simplex virus infection as a model for antiviral chemotherapy. Ann. N.Y. Acad. Sci. 284:624 (1977).CrossRefGoogle Scholar
  11. 11.
    S.L. Spruance, D.J. Freeman, and N.V. Sheth. Comparison of topical foscarnet, acyclovir (ACV) and ACV ointment in the treatment of experimental cutaneous herpes simplex virus (HSV) infection. Antimicrob. Agents Chemother. 30:196 (1986).PubMedGoogle Scholar
  12. 12.
    S.L. Spruance, M.B. McKeough, and J.R. Cardinal. Penetration of guinea pig skin by acyclovir in different vehicles and correlation with the efficacy of topical therapy of experimental cutaneous herpes simplex virus infection. Antimicrob. Agents Chemother. 25:10 (1984).PubMedGoogle Scholar
  13. 13.
    E.R. Kern, L.A. Glasgow, J.C. Overall, Jr., J.M. Reno, and J.A. Boezi. Treatment of experimental herpesvirus infections with Phosphonoformate and some comparison with Phosphonoacetate. Antimicrob. Agents Chemother. 14:817 (1978).PubMedGoogle Scholar
  14. 14.
    E.R. Kern. Acyclovir treatment of experimental genital herpes simplex virus infections. Symposium on acyclovir. Am. J. Med. 73:100 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    A.D. Pronovost, H.L. Lucia, P.R. Dann, and G.D. Hsiung. Effect of acyclovir on genital herpes in guinea pigs. J. Infect. Dis. 145:904 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    L.R. Stanberry, E.R. Kern, J.T. Richards, T.A. Abbott, and J.C. Overall, Jr. Genital herpes in guinea pigs: Pathogenesis of the primary infection and description of recurrent disease. J. Infect. Dis. 146:397 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    G.D. Hsiung, D.R. Mayo, H.L. Lucia, and M.L. Landry. Genital herpes: Pathogenesis and chemotherapy in the guinea pig model. Rev. Infect. Dis. 6:33 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    E.B. Fraser-Smith, D.F. Smee, and T.R. Matthews. Efficacy of the acyclic nucleoside 9-(1,3-dihydroxy-2-propoxymethyl) guanine against primary and recrudescent genital herpes simplex virus type 2 infections in guinea pigs. Antimicrob. Agents Chemother. 24:883 (1983).PubMedGoogle Scholar
  19. 19.
    E.R. Kern. Treatment of genital herpes simplex virus infections in guinea pigs, In: “Herpesvirus”, F. Rapp, ed., Alan R. Liss, Inc., N.Y. (1984).Google Scholar
  20. 20.
    L. Corey, H.G. Adams, Z.A. Brown, and K.K. Holmes. Genital herpes simplex virus infections: Clinical manifestations, course, and complications. Ann Intern. Med. 98:958 (1983).PubMedGoogle Scholar
  21. 21.
    L. Corey, A.J. Nahmias, M.E. Guinan, J.K. Benedetti, C.W. Critchlow, and K.K. Holmes. A trial of topical acyclovir in genital herpes simplex virus infections. N. Engl. J. Med. 306:1313 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    R.C. Reichman, G.J. Badger, M.E. Guinan, A.J. Nahmias, R.E. Keeney, L.G. Davis, T. Ashikaga and R. Dolin. Topically administered acyclovir in the treatment of recurrent herpes simplex genitalis: A controlled trial. J. Infect. Dis. 147:336 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    Y.J. Bryson, M. Dillon, M. Lovett, G. Acuna, S. Taylor, J.D. Cherry, B.L. Johnson, E. Wiesmeier, W. Growdon, T. Creagh-Kirk, and R. Keeney. Treatment of first episodes of genital herpes simplex virus infection with oral acyclovir. N. Engl. J. Med. 308:916 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    L. Corey, K.H. Fife, J.K. Benedetti, C.A. Winter, A. Fahnlander, J.D. Connor, M.A. Hintz, and K.K. Holmes. Intravenous acyclovir for the treatment of primary genital herpes. Ann. Intern. Med. 98:914 (1983).PubMedGoogle Scholar
  25. 25.
    Y.J. Bryson, M. Dillon, M. Lovett, D. Bernstein, E. Garratty, and J. Sayre. Treatment of first episode genital HSV with oral acyclovir: Long term follow-up of recurrences. A preliminary report. Scand. J. Infect. Dis. (Suppl.) 47:70 (1985).Google Scholar
  26. 26.
    G.J. Mertz, C.W. Critchlow, J. Benedetti, R.C. Reichman, R. Polin, J. Connor, P.C. Redfield, M.C. Savoia, P.P. Richman, P.L. Tyrrell, L Miedzinski, J. Portnoy, R.E. Keeney, and L. Corey. Pouble-blind placebo controlled trial of oral acyclovir for first episode genital herpes. J. Am. Med. Assoc. 252:1147 (1984).CrossRefGoogle Scholar
  27. 27.
    R.C. Reichman, G.J. Badger, G.J. Mertz, L. Corey, P.P. Richman, J.P. Connor, P. Redfield, M.C. Savoia, M.N. Oxman, Y. Bryson, P.L. Tyrrell, J. Portnoy, T. Creigh-Kirk, R. Keeney, T. Ashikaga, and R. Polin. Treatment of recurrent genital herpes simplex infections with oral acyclovir. A controlled trial. J. Am. Med. Assoc. 251:2103 (1984).CrossRefGoogle Scholar
  28. 28.
    J.M. Douglas, C. Critchlow, J. Benedetti, G.J. Mertz, J.P. Connor, M.A. Hintz, A. Fahnlander, M. Remington, C. Winter, and L. Corey. A double-blind study of oral acyclovir for suppression of recurrences of genital herpes simplex virus infection. N. Engl. J. Med. 310:1551 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    L.A. Glasgow, J.T. Richards, and E.R. Kern. Effect of acyclovir treatment on acute and chronic murine cytomegalovirus infection. Symposium on acyclovir. Am. J. Med. 73:132 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    F.J. Bia, B.P. Griffith, C.K.Y. Fong and G.O. Hsiung. Cytomegalo-virus infections in the guinea pig: Experimental models for human disease. Rev. Infect. Dis. 5:177 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    C.K.Y. Fong, S.P. Cohen, S. McCormick, and G.P. Hsiung. Antiviral effect of 9-(1,3-dihydroxy-2-propoxymethyl) guanine against cytomegalovirus infection in a guinea pig model. Antiviral Res. 7:11(1987).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Mills. 9-(l,3-dihydroxy-2-propoxymethyl) guanine (DHP6) for treatment of cytomegalovirus infections, In: “Antiviral Chemotherapy, New Directions for Clinical Application and Research”, J. Mills and L. Corey, eds., Elsevier, New York (1986).Google Scholar
  33. 33.
    Collaborative DHPG Treatment Study Group. Treatment of serious cytomegalovirus infections with 9-(1,3-dihydroxy-2-propoxymethyl) guanine in patients with AIDS and other immunodeficiencies. N. Engl. J. Med. 314:801 (1986).CrossRefGoogle Scholar
  34. 34.
    D.H. Shepp, P.S. Dandliker, P. de Miranda, T.C. Burnette, D.M. Cederberg, L.E. Kirk, and J.D. Meyers. Activity of 9-[2-hydroxy-1-(hydroxymethyl)ethoxymethyl] guanine in the treatment of cytomegalovirus pneumonia. Ann. Intern. Med. 103:368 (1985).PubMedGoogle Scholar
  35. 35.
    M.G. Myers, H.L. Duer, and CK. Hausler. Experimental infection of guinea pigs with varicella-zoster virus. J. Infect. Dis. 142:414 (1980).PubMedCrossRefGoogle Scholar
  36. 36.
    A.D. Felsenfeld, and N.J. Schmidt. Antigenic relationships among several simian varicella-like viruses and varicella-zoster virus. Infect. Immun. 15:807 (1977).PubMedGoogle Scholar
  37. 37.
    K.F. Soike, A.D. Felsenfeld, S. Gibson, and P.J. Gerone. Ineffectiveness of adenine arabinoside and adenine arabinoside 5′-monophosphate in simian varicella infection. Antimicrob. Agents Chemother. 18:142 (1980).PubMedGoogle Scholar
  38. 38.
    K. F. Soike, A.D. Felsenfeld, and P.J. Gerone. Acyclovir treatment of experimental simian varicella infection of monkeys. Antimicrob. Agents Chemother. 20:291 (1981).PubMedGoogle Scholar
  39. 39.
    K.F. Soike, and P.J. Gerone. Acyclovir in the treatment of simian varicella virus infection of the African Green monkey. Symposium on Acyclovir. Am. J. Med. 73:112 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    K.F. Soike, M.J. Kramer, and P.J. Gerone. In vivo antiviral activity of recombinant type α interferon A in monkeys with infections due to simian varicella virus. J. Infect. Dis. 147:933 (1983).PubMedCrossRefGoogle Scholar
  41. 41.
    K.F. Soike, S. Gibson, and P.J. Gerone. Inhibition of simian varicella virus infection of African Green monkeys by (E)-5-(2-bromovinyl)-2′-deoxyuridine (BVDU). Antiviral Res. 1:325 (1981).CrossRefGoogle Scholar
  42. 42.
    R.J. Whitley, M. Hilty, R. Haines, Y. Bryson, J.D. Connor, S.-J. Soong, C.A. Alford, Jr., and NIAID Collaborative Antiviral Study Group. Vidarabine therapy of varicella in immunocompromised patients. J. Pediatrics. 101:125 (1982).CrossRefGoogle Scholar
  43. 43.
    R.J. Whitley, S.-J. Soong, R. Dolin, R. Betts, C. Linnemann, Jr., C.A. Alford, Jr., and the NIAID Collaborative Antiviral Study Group. Early vidarabine therapy to control the complications of herpes zoster in immunocompromised patients. N. Engl. J. Med. 307:971 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    CG. Prober, L.E. Kirk, and R.E. Keeney. Acyclovir therapy of chickenpox in immunosuppressed children — A collaborative study. J. Pediatrics. 101:622 (1982).CrossRefGoogle Scholar
  45. 45.
    H.H. Balfour, Jr., B. Bean, O.L. Laskin, R.F. Ambinder, J.D. Meyers, J.C. Wade, J.A. Zaia, D. Aeppli, L.E. Kirk, A.C. Segreti, and R.E. Keeney. Acyclovir halts progression of herpes zoster in immunocompromised patients. N. Engl. J. Med. 308:1448 (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    D.H. Shepp, P.S. Dandliker, and J.D. Meyers. Treatment of varicella- zoster virus infection in severely immunocompromised patients. A randomized comparison of acyclovir and vidarabine. N. Engl. J. Med. 314:208 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    A.M. Arvin, J.H. Kushner, S. Feldman, R.L. Baehner, D. Hammond, and T.C. Merigan. Human leukocyte interferon for the treatment of varicella in children with cancer. N. Engl. J. Med. 306:761 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    Y. Benoit, G. Laureys, M.-J. Delbeke and E. De Clercq. Oral BVDU treatment of varicella in children with cancer. Eur. J. Pediatr. 143:198 (1985).PubMedCrossRefGoogle Scholar
  49. 49.
    Z. Nagy, T.A. Jennings, T.G. Brady, H.L. Lucia, J.A. Armstrong, and G.D. Hsiung. Effect of cyclosporin A immunosuppression on primary lymphotropic herpes virus infection in the guinea pig. Intervirol. In press.Google Scholar
  50. 50.
    R.R. Grunert, J.W. McGahen, and W.L. Davies. The in vivo antiviral activity of 1-adamantanamine (amantadine) 1. prophylactic and therapeutic activity against influenza viruses. Virology 26:262 (1965).PubMedCrossRefGoogle Scholar
  51. 51.
    J.S. Walker, E.L. Stephen, and R.O. Spertzel. Small particle aerosols of antiviral compounds in treatment of type A influenza pneumonia in mice. J. Infect. Dis. 133:A140 (1976).PubMedCrossRefGoogle Scholar
  52. 52.
    C.W. Potter and J.S. Oxford. Animal models of influenza virus infection as applied to the investigation of antiviral compounds. In: “Chemoprophylaxis and Virus Infections of the Respiratory Tract”. J.S. Oxford, ed., CRC Press, Cleveland (1977).Google Scholar
  53. 53.
    F.G. Hayden. Animal models of influenza virus infection for evaluation of antiviral agents. In: “Experimental Models in Antimicrobial Chemotherapy”, vol. 3, O. Zak and M.A. Sande eds., Academic Press, London (1986).Google Scholar
  54. 54.
    V. Knight and B.E. Gilbert. Ribavirin aerosol treatment of Influenza. In: “Infectious Disease Clinics of North America”, V. Knight and B.E. Gilbert, eds. W.B. Saunders, Philadelphia (1987).Google Scholar
  55. 55.
    G.A. Prince, A.B. Jenson, R.L. Horswood, E. Camargo, and R.M. Chanock. The pathogenesis of respiratory syncytial virus infection in cotton rats. Am. J. Pathol. 93:771 (1978).PubMedGoogle Scholar
  56. 56.
    P.R. Wyde, S.Z. Wilson, R. Petrella, and B.E. Gilbert. Efficacy of high dose — short duration ribavirin aerosol in the treatment of respiratory syncytial virus infected cotton rats and influenza B virus infected mice. Antiviral Res. 7:211 (1987).PubMedCrossRefGoogle Scholar
  57. 57.
    C.B. Hall, J.T. McBride, C.L. Gala, S.W. Hildreth, and K.C. Schnabel. Ribavirin treatment of respiratory syncytial viral infection in infants with underlying cardiopulmonary disease. J. Am. Med. Assoc. 254:3047 (1985).CrossRefGoogle Scholar
  58. 58.
    H.J. Alter, J.W. Eichberg, H. Masur, W.C. Saxinger, R. Gallo, D.M. Macher, H.C. Lane, and A.S. Fauci. Transmission of HTLV-III infection from human plasma to chimpanzees: An animal model for AIDS. Science 226:549 (1984).PubMedCrossRefGoogle Scholar
  59. 59.
    P.N. Fultz, H.M. Mclure, R.B. Swenson, CR. McGrath, A. Brodie, J.P. Getchell, F.C. Jensen, D.C. Anderson, J.R. Broderson, and D.P. Francis. Persistent infection of chimpanzees with human T-lymphotropic virus type III/lymphadenopathy associated virus: a poten­tial model for acquired immunodeficiency syndrome. J. Virol. 58:116 (1986).PubMedGoogle Scholar
  60. 60.
    D.E. Mosier, R.A. Yetter, and H.C. Morse, III. Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice. J. Exp. Med. 161:766 (1985).PubMedCrossRefGoogle Scholar
  61. 61.
    W.D. Hardy. Feline acquired immune deficiency syndrome: A feline retrovirus-induced syndrome of pet cats. In: “Animal Models of Retrovirus Infection and Their Relationship to AIDS”. L.A. Salzman ed., Academic Press, London. (1986).Google Scholar
  62. 62.
    N.C. Pedersen, E.W. Ho, M.L. Brown, and J.K. Yamamoto. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790 (1987).PubMedCrossRefGoogle Scholar
  63. 63.
    P.J. Kanki, and M. Essex. Animal models of HTLV-III/LAV infection and AIDS. In: “AIDS, Modern Concepts and Therapeutic Challenges”, S. Broder, ed. Marcel Dekker Inc. (1987).Google Scholar
  64. 64.
    R.C. Desrosiers and N.L. Letvin. Animal models for acquired immunodeficiency syndrome. Rev. Infect. Dis. 9:438 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Earl R. Kern
    • 1
  1. 1.Division of Infectious Diseases, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations