Advertisement

Glyoxylate Oxidation and Enzymes of Oxalate Biosynthesis in Thiamine-Deficient Rats

  • S. K. Thind
  • H. Sidhu
  • R. Nath
Conference paper

Abstract

Glyoxylic acid (GA) is the major precursor of endogenous oxalate and is mainly derived from glycine, glycolate and hydroxyproline. It can be either converted to C02 in liver and kidney mitochondria by TPP-dependent α-ketoglutarate:GA carboligase1 and via the glyoxylate oxidation cycle2, or it can be oxidized to oxalate by glycolic acid oxidase (GAO) and lactate dehydrogenase (LDH). Thiamine deficiency leads to excessive accumulation of GA in tissues and its increased excretion in urine3,4 and may result in a greater incidence of renal calculi5,6. There are, however, contradictory reports on the effect of thiamine deficiency on oxalate excretion7,8. The present study tries to elucidate the biochemical cause of the hyperoxaluria in thiamine deficiency.

Keywords

Thiamine Deficiency Glyoxylic Acid Kidney Mitochondrion Urinary Citrate Excretion Pyridoxine Status 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Schlossberg, R. J. Bloom, D. A. Richert, and W. W. Westerfield, Biochem. 9:1148 (1970).CrossRefGoogle Scholar
  2. 2.
    E. E. Dekker and S. C. Gupta, Fed. Proc. 38:2339 (1979).Google Scholar
  3. 3.
    C. C. Liang, Biochem. J. 82:429 (1962).PubMedGoogle Scholar
  4. 4.
    R. M. Buckle, Clin. Sci. 25:207 (1963).PubMedGoogle Scholar
  5. 5.
    S. Davidson, A. P. Meiklejohn, and R. Passmore, “Human Nutrition and Dietetics”, Williams & Wilkins, Baltimore (1959).Google Scholar
  6. 6.
    S. Dhanmitta, A. Valyasevi, and R. Van Reen, Nutr. Rep. Int. 2:87 (1970).Google Scholar
  7. 7.
    E. Takasaki, Invest. Urol. 7:150 (1969).PubMedGoogle Scholar
  8. 8.
    S. Hauschildt, R. Rudolph, and W. Feldheim, Int. J. Vitaminol. Nutr. Res. 42:457 (1972).Google Scholar
  9. 9.
    L. Boni, L. Kieckens, and A. Hendrikx, J. Nutr. Sci. Vitaminol. 26:507 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Kishi and K. Folkares, J. Nutr. Sci. Vitaminol. 22:225 (1976).PubMedCrossRefGoogle Scholar
  11. 11.
    J. V. O’Fallon and R. W. Brosemer, Biochim. Biophys. Acta 499:321 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    V. Sharma, M. S. R. Murthy, S. K. Thind, and R. Nath, Biochem. Int. 3:507 (1981).Google Scholar
  13. 13.
    A. Hodgkinson and A. Williams, Clin. Chim. Acta 36:127 (1972).PubMedCrossRefGoogle Scholar
  14. 14.
    J. C. D. White and D. T. Davies, J. Dairy Res. 30:171 (1963).CrossRefGoogle Scholar
  15. 15.
    R. G. Rosso and E. Adams, J. Biol. Chem. 23:5524 (1967).Google Scholar
  16. 16.
    A. Ruffo, E. Testa, A. Adinolfi, G. Pelizza, and R. Moratti, Biochem. J. 103:19 (1967).PubMedGoogle Scholar
  17. 17.
    C. J. Gubler, J. Biol. Chem. 236:312 (1961).Google Scholar
  18. 18.
    A. Weinhouse, in: “Symposium on Amino Acid Metabolism”, W. D. McElroy and H. B. Glass, eds., John Hopkins Press, Baltimore (1955).Google Scholar
  19. 19.
    A. Ruffo, A. Adinolfi, G. Budillon, and G. Capobianco, Biochem. J. 85:593 (1962).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • S. K. Thind
    • 1
  • H. Sidhu
    • 1
  • R. Nath
    • 1
  1. 1.Dept. of BiochemistryPostgraduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations