Advertisement

The Renal Handling of Citrate

  • P. Deetjen

Abstract

Second-year medical students already know that citric acid is an especially valuable substance. They learn that of the metabolic processes in the body, the “citric acid cycle” is of utmost importance: not only is this the final metabolic pathway of glucose but also it is the pathway for many other substrates. Thus, nobody will doubt that citrate is a valuable metabolic substrate. However, against all expectations the kidney seems to handle this substance rather carelessly. Examination of the total urinary output shows a daily loss of more than 3 mmol which is 5 times the amount contained in plasma or approximately the entire pool in the total extracellular fluid. But we also know that Mother Nature is not wasteful. All other substrates and fuels in our metabolism are preserved most carefully and only traces of glucose, amino acids, fatty acids, and the like appear in urine.

Keywords

Proximal Tubule Basolateral Membrane Organic Anion Citric Acid Cycle Proximal Tubular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. O. Schwille, D. Scholz, and K. Schwüle, J. Clin. Chem. Clin. Biochem. 2):169 (1982).Google Scholar
  2. 2.
    P. Deetjen and H. Sonnenberg, Pflug. Arch. Ges. Physiol. 278:48 (1963).CrossRefGoogle Scholar
  3. 3.
    Y. J. Kook and W. D. Lotspeich, Am. J. Physiol. 215:282 (1968).PubMedGoogle Scholar
  4. 4.
    A. P. Grollman, W. G. Walker, H. C. Harrison, and H. E. Harrison, Am. J. Physiol. 205:697 (1963).PubMedGoogle Scholar
  5. 5.
    R. Greger, F. Lang, and P. Deetjen, in: “International Review of Physiology”, K. Thurau, ed., University Park Press, Baltimore (1973).Google Scholar
  6. 6.
    S. Baruch, R. L. Burich, and V. F. King, Am. J. Physiol. 225:388 (1973).Google Scholar
  7. 7.
    H. Nieth and P. Schollmeyer, Nature, 209:1244 (1966).PubMedCrossRefGoogle Scholar
  8. 8.
    S. H. Wright, I. Kippen, J. R. Klinenberg, and E. M. Wright, J. Membr. Biol. 57:73 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    S. H. Wright, S. Krasne, I. Kippen, and E. M. Wright, Biochim. Biophys. Acta 640:767 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    S. H. Wright, I. Kippen, and E. M. Wright, Biochim. Biophys. Acta 684:287 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    S. H. Wright, I. Kippen, and E. M. Wright, J. Biol. Chem. 257:1773 (1982).PubMedGoogle Scholar
  12. 12.
    F. Lang, S. Silbernagl, and P. Quehenberger, in: “Hydrogen Ion Transport in Epithelia”, J. Schulz, ed., Biomedical Press, Elsevier, North-Holland (1980).Google Scholar
  13. 13.
    D. P. Simpson, Am. J. Physiol. 244:F223 (1983).PubMedGoogle Scholar
  14. 14.
    G. Burckhardt, Pflüg. Arch. Ges. Physiol, (in press).Google Scholar
  15. 15.
    K. J. Ullrich, H. Fasold, G. Rumrich, and S. Kloss, Pflüg. Arch. Ges. Physiol. (in press).Google Scholar
  16. 16.
    F. Lang, G. Messner, W. Wang, and H. Oberleithner, Klin. Wschr. 61:1029 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    F. Lang, G. Messner, W. Wang, W. Paulmichl, H. Oberleithner, and P. Deetjen, Pflüg. Arch. Ges. Physiol, (in press).Google Scholar
  18. 18.
    M. A. Crawford, Biochem. J. 88:115 (1970).Google Scholar
  19. 19.
    B. H. Selleck and J. J. Cohen, Am. J. Physiol. 208:24 (1965).PubMedGoogle Scholar
  20. 20.
    K. E. Joergensen, K. Kragh-Hansen, H. Roigaard-Petersen, and M. J. Sheikh, Am. J. Physiol. 244:F686 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • P. Deetjen
    • 1
  1. 1.Institute of PhysiologyInnsbruckAustria

Personalised recommendations