Skip to main content

Part of the book series: Earlier Brown Boveri Symposia ((EBBS))

Summary

Perfect isolation between power and control circuits in high-voltage converter equip­ment is obtained by optical thyristor triggering. Direct optical triggering of power thyristors and auxiliary thyristors with lasers or LEDs, i.e. triggering with an internally generated photocurrent, requires the development of highly trigger-sensitive thyristor gates. High trigger-power amplification and different methods of avoiding or compensating for fault triggering permit the design of light-activated thyristors which can be triggered with light power in the milliwatt range. The temperature dependence of turn-on properties and some relations to thyristor structures can be obtained from relatively simple charge-control model calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Gerlach and G. Köhl, Thyristoren für hohe Spannungen, Festkörperprobleme IX, Vieweg-Verlag, 1969, 354–370.

    Google Scholar 

  2. D. Silber and M. Füllmann, “Improved Gate Concept for Light-Activated Power Thyristors,” Proc. IEDM, Washington D.C. (1975), 371–374.

    Google Scholar 

  3. P. De Bruyne and R. Sittig, “Light-Sensitive Structure for High-Voltage Thyristors,” IEEE Power Electronics Specialists Conference (1976) Cleveland, Ohio, Conf. Report, 262.

    Google Scholar 

  4. V.A.K. Temple and P. Ferro, “High-Power Dual Amplifying Gate Light-Triggered Thyristors,” IEEE Trans. Electron Devices, ED-23 (1976) 893–898.

    Article  Google Scholar 

  5. D. Silber, W. Winter, and M. Füllmann, “Progress in Light-Activated Power Thyristors,” IEEE Trans. Electron Devices, ED-23 (1976) 899–904.

    Article  Google Scholar 

  6. E.S. Schlegel and D.J. Page, “A High Power Light-Activated Thyristor,” Proc. IEDM, Washington D.C. (1976) 483–486.

    Google Scholar 

  7. J. Nakata, “Light-Activated Thyristor,” U.S. Pat. 3 697 833 (Jap. 45/14600, 1970).

    Google Scholar 

  8. W. Gerlach, “Light-Activated Power Thyristors,” 6th European Solid State Dev. Res. Conf. ( ESSDERC), Solid State Devices (1976) 111–133.

    Google Scholar 

  9. D.E. Williamson, “Cone Channel Condensor Optics,” J. of Opt. Soc. America, 42 (1952) 712.

    Article  Google Scholar 

  10. D. Silber et al., “Lichtzündung von Leistungsthyristoren I,” Arbeitsbericht BMFT 403-7291-NT 541 (1975).

    Google Scholar 

  11. N. Konishi et al., “ A 6000 V, 1500 A Light-Activated Thyristor,” Proc. IEDM, Washington D.C. (1980) 642.

    Google Scholar 

  12. H. Schlangenotto and W. Gerlach, “On the Effective Carrier Lifetime in p-s-n Rectifiers at High Injection Levels,” Solid-State Electronics, 12 (1969) 267–275.

    Article  Google Scholar 

  13. A.A. Jaecklin and I. Bajan, “Novel Gate Concept Improves Performance of Light-Fired Thyristor,” Proc. IEDM, Washington D.C. (1979) 254–257.

    Google Scholar 

  14. V.A.K. Temple, “Directly Light-Fired Thyristors with High dI/dt Capability,” Proc. IEDM, Washington D.C. (1977) 22–25.

    Google Scholar 

  15. V.A.K. Temple, “Comparison of Light-Triggered and Electrically Triggered Thyristor Turn-On,” IEEE Trans. Electron Devices, ED-28 (1981) 860.

    Article  Google Scholar 

  16. D. Kuse, P. De Bruyne, P.M. Van Iseghem, and R. Sittig, “New Voltage Limiters, Breakover Diodes and Light-Activated Devices for Improved Protection of Power Thyristors,” 2nd Int. Conf. on Power Electronics - Power Semiconductors and Their Applications, IEE London (1977), 18.

    Google Scholar 

  17. D. Silber et al., “Lichtzündung von Leistungsthyristoren II,” Arbeitsbericht BMFT 403-7291-NT 600 (1978).

    Google Scholar 

  18. P.M. Van Iseghem, “p-i-n Epitaxial Structures for High-Power Devices,” IEEE Trans. Electron Devices, ED-23 (1976) 823.

    Article  Google Scholar 

  19. P. Svedberg, Halbleiterordnung, Patent DE-AS P 26 25 917 (FRG), (750 7080, Sweden, 1975).

    Google Scholar 

  20. V.P. O’Neill, P.G. Alonas, and D.M. Gilbert, “A Monolithic Optically Isolated Zero Crossing Triac Driver,” Proc. IEDM, Washington D.C. (1978) 107.

    Google Scholar 

  21. H. Patalong, Lichtzündbarer Thyristor, European Pat. No. 0 029 163 (DE 29 45 335, 1979).

    Google Scholar 

  22. D. Silber, M. Füllmann, and W.M. Lukanz, “Recent Developments in Light-Activated Power Thyristors,” 2nd Int. Conf. on Power Electronics - Power Semiconductors and Their Applications, IEE London (1977) 14.

    Google Scholar 

  23. D. Silber, M. Füllmann, and W. Winter, “Light-Activated Auxiliary Thyristors,” Proc. IEDM, Washington D.C. (1978) 575.

    Google Scholar 

  24. J. Burtscher, “Thyristoren mit innerer Zündverstärkung,” VDE-Tagung, Dynamische Probleme der Thyristortechnik, Aachen (1971) 128–138.

    Google Scholar 

  25. P. Voss, Mit Licht steuerbarer Thyristor, Patent (FRG), DOS 25 38 549 (1977).

    Google Scholar 

  26. W. Gerlach, “Thyristor mit Querfeldemitter,” Z. für angew. Physik, 19 (1965) 396–400.

    Google Scholar 

  27. H. Ohashi, H. Matsuda, T. Ogura, T. Tsukakoshi, and Y. Yamaguchi, “Directly Light-Triggered 4 kV - 1,500 A Thyristor (SL 1500 GX 21),” Toshiba Rev., No. 131 (1981) 19–22; and private communication.

    Google Scholar 

  28. M.H. Hanes and L.R. Lowry, Lichtgetriggertes Hochleistungshalbleiterbauelement (U.S. Pat. 800 706, 1977), DOS 28 08 531.

    Google Scholar 

  29. H. Ohashi and Y. Shirasaka, European Pat. 00 21 352 (Jap. 77 148/79).

    Google Scholar 

  30. J. Tihany, “Functional Integration of Power MOS and Bipolar Devices,” Proc. IEDM, Washington D.C. (1980) 35.

    Google Scholar 

  31. J.K. Page, “Light-Triggered Thyristors for VAR Generator Applications,” 7th IEEE/PES Conf. (1979) 222–226.

    Google Scholar 

  32. V.A.K. Temple, “Light-Triggered Thyristors for HVDC Applications,” 7th IEEE/ PES Conf. (1979) 213–221.

    Google Scholar 

  33. A. Tada, A. Kawakami, T. Miyazima, T. Nakagawa, K. Yamanaka, and K. Ohtaki, “4 kV, 1500 A Light Triggered Thyristor,” Proc. 12th Conf. on Solid State Devices, Tokyo 1980, Jpn. J. Appl. Phys., 20 (1981) Suppl. 20-1, 99–104.

    Google Scholar 

  34. V. Temple, “Inverter Light Triggering Thyristor with Unique Arm-Structure Amplifying Gate,” IEEE Trans. Electron Devices, ED-28 (1981) 801.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Silber, D., Maeder, H., Fuellman, M. (1982). Light-Activated Thyristors. In: Sittig, R., Roggwiller, P. (eds) Semiconductor Devices for Power Conditioning. Earlier Brown Boveri Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7263-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7263-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7265-3

  • Online ISBN: 978-1-4684-7263-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics