General Bibliography

  • René-Guy Busnel
  • James F. Fish
Part of the NATO Advanced Study Institutes Series book series (volume 28)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography on Echolocation in Bats

  1. 1.
    Aidley, D. J. Echo intensity in range estimation by bats. Nature, 224, 1330–1331. 1969.CrossRefGoogle Scholar
  2. 2.
    Altes, R. A. Optimum waveforms for sonar velocity discrimination, in: Proc. IEEE, 59, 1615–1617. 1971.Google Scholar
  3. 3.
    Altes, R. A. Suppression of radar clutter and multipath effects for wide-band signals. IEEE Transactions on Information Theory, IT-17, 344–346. 1971.CrossRefGoogle Scholar
  4. 4.
    Altes, R. A. Methods of wideband signal design for radar and sonar systems. Federal Clearinghouse Number AD 732 494. 1971.Google Scholar
  5. 5.
    Altes, R. A. Some invariance properties of the wide-band ambiguity function. J. Acoust. Soc. Am., 53, 1154–1160. 1973.CrossRefGoogle Scholar
  6. 5.
    Altes, R. A. Study of animal systems with application to sonar. Progress Report No. ESL PR 144, Electromagnetic Systems Labs., Sunnyvale, Cal. 1974.Google Scholar
  7. 7.
    Altes, R. A. Mechanism for aural pulse compression in mammals. J. Acoust. Soc. Am., 57, 513–515. 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Altes, R. A. Sonar for generalized target description and its similarity to animal echolocation systems. J. Acoust. Soc. Am., 59, 97–105. 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Altes, R. A. The Fourier-Mellin transform and mammalian hearing. J. Acoust. Soc. Am., 63, 174–183. 1978.PubMedCrossRefGoogle Scholar
  10. 10.
    Altes, R. A. Angle estimation and binaural processing in animal echolocation. J. Acoust. Soc. Am., 63, 155–173. 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Altes, R. A. Further development and new concept for bionic sonars, Vols. II and III. Report OC-R-78-A 004–1, ORINC0N Corp., 3366 N. Torrey Pines Ct., La Jolla, CA. 92037. 1978.Google Scholar
  12. 12.
    Altes, R. A. and Faust, W. I. Further development and new concept for bionic sonar, Vol. I. Report OC-R-78-A 004–1, ORINCON Corp., 3366 N. Torrey Pines Ct., La Jolla, CA. 92037. 1978.Google Scholar
  13. 13.
    Altes, R. A. and Reese, W. D. Doppler-tolerant classification of distributed targets — a bionic sonar. IEEE Transactions Aerospace and Electronic Systems, Vol. AES-11 (5), 708–724. 1975.CrossRefGoogle Scholar
  14. 14.
    Altes, R. A. and Skinner, D. P. Sonar velocity resolution with a linear-period-modulated pulse. J. Acoust. Soc. Am., 61, 1019–1030. 1977.CrossRefGoogle Scholar
  15. 15.
    Altes, R. A. and Titlebaum, E. L. Bat signals as optimally Doppler tolerant waveforms. J. Acoust. Soc. Am., 48, 1014–1020. 1970.CrossRefGoogle Scholar
  16. 15.
    Altes, R. A. and Titlebaum, E. L. Graphical derivations of radar, sonar, and communication signals. IEEE Transactions Aerospace and Electronic Systems, Vol. AES-11 (1), 38–44. 1975.CrossRefGoogle Scholar
  17. 17.
    Anderson, G. M. A model for the bat versus moth pursuit-evasion problem. J. Acoust. Soc. Am., Suppl. No. 1, S88. 1978.CrossRefGoogle Scholar
  18. 18.
    Bach Andersen, B., and Miller, L. A. A portable ultrasonic detection system for recording bat cries in the field. J. Mammal., 58, 226–229. 1977.CrossRefGoogle Scholar
  19. 19.
    Barclay, R. M. R. Vocal communication and social behavior of the little brown bat, Myotis lucifugus (Chiroptera: Vespertilionidae). M. Sc. Thesis, Dept. of Biology, Carleton University, Ottawa, Canada, 1978.Google Scholar
  20. 20.
    Baron, G. Morphologie comparative des relais auditifs chez les chiroptères. Dissertation, Montreal, 1972.Google Scholar
  21. 21.
    Baron, G. Differential phylogenetic development of the acoustic nuclei among chiroptera. Brain Behav. Evol., 9, 7–40. 1974.PubMedCrossRefGoogle Scholar
  22. 22.
    Beuter, K. J. Systemtheoretische Untersuchungen zur Echoortung der Fledermäuse. Dissertation, Universität Tübingen, 1976.Google Scholar
  23. 23.
    Beuter, K. J. Maskierung von konstantfrequenten Echoortungslauten mit Bandpaßrauschen bei der Fledermaus Rhinolophus ferrumequinum. Verh. Dtsch. Zool. Ges., 1978, 195, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  24. 24.
    Beuter, K. J. Optimalempfängertheorie und Informationsverarbeitung im Echoortungssystem der Fledermäuse, in: “Kybernetik 77,” Oldenburg-Verlag, München, 1978.Google Scholar
  25. 25.
    Bradbury, J. W. Target discrimination by the echolocating bat Vampyrum spectrum. J. Exp. Zool., 173, 23–46. 1970.PubMedCrossRefGoogle Scholar
  26. 26.
    Bradbury, and Vehrencamp, S. L. Social organization and foraging in emballonurid bats. I. Field studies. Behav. Ecol. Sociobiol., 1, 337–381. 1976.CrossRefGoogle Scholar
  27. 27.
    Brosset, A. “La Biologie des Chiroptères,” Masson et Cie., Paris, 1966.Google Scholar
  28. 28.
    Brown, A. M. An investigation of the cochlear microphonic response of two species of echolocating bats, Rousettus aegyptiacus (Geoffroy) and Pipistrellus pipistrellus. J. comp. Physiol., 83, 407–413. 1973.CrossRefGoogle Scholar
  29. 29.
    Brown, and Pye, J. D. Auditory sensitivity at high frequencies in animals. Adv. Comp. Physiol. Biochem., 6, 1–73. 1975.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown, P. E. Vocal communication and the development of hearing in the pallid bat, Antrozous pallidus. Ph. D. Thesis, University of California Los Angeles, 1973.Google Scholar
  31. 31.
    Brown, P. E. Vocal communication in the pallid bat, Antrozous pallidus. Z. Tierpsychol., 41, 34–54. 1976.PubMedCrossRefGoogle Scholar
  32. 32.
    Brown, P. E., Grinnell, A. D., and Harrison, J. B. Developing of hearing in pallid bat, Antrozous pallidus. J. comp. Physiol. A, 126, 169–182. 1978.CrossRefGoogle Scholar
  33. 33.
    Bruns, V. Die Anpassung des Hörsystems der Hufeisennase an die Echoortung mit konstantfrequenten Ortungslauten. Verh. Dtsch. Zool. Ges., 1976, 268, G. Fischer Verl., Stuttgart, 1976.Google Scholar
  34. 34.
    Bruns, V. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J. comp. Physiol. A, 106, 77–86. 1976.CrossRefGoogle Scholar
  35. 35.
    Bruns, V. Peripheral auditory tuning for fine frequency analysis of the CF-FM bat, Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J. comp. Physiol. A, 106, 87–97. 1976.CrossRefGoogle Scholar
  36. 36.
    Bruns, V. Die Feinstruktur der für die Hydrodynamik wesentlichen Elemente der Cochlea der Großen Hufeisennase, Rhinolophus ferrumequinum. Verh. Dtsch. Zool. Ges., 1978, 154, G. Fischer Verl.l;, Stuttgart, 1978.Google Scholar
  37. 37.
    Bruns, V., Neuweiler, G., and Suga, N. Specialized frequency processing in the auditory system of the echolocating horseshoe-bat. Exp. Brain Res., 23, Suppl., 30. 1975.Google Scholar
  38. 38.
    Burikova, N. N. Efferent links in the cerebral auditory cortex of the bat Myotis oxygnathus. J. Evol. Biochem. Physiol., 7, 450–455. 1971.Google Scholar
  39. 39.
    Busnel, R. G., ed. “Animal Sonar Systems,” Vol. I and Vol. II. Lab. Physiol. Acoust., C. N. R. Z., Jouy-en-Josas, France, 1967.Google Scholar
  40. 40.
    Cahlander, D. A., McCue, J. J. G., and Webster, F. A. The determination of distance by echolocating bats. Nature, 201, 544–546. 1965.CrossRefGoogle Scholar
  41. 41.
    Dalland, J. I. Auditory thresholds in bats: a behavioral technique. J. Aud. Res., 5, 95–108. 1965.Google Scholar
  42. 42.
    Dalland, J. I. Hearing sensitivity in bats. Science, 150, 1185–1186. 1965.PubMedCrossRefGoogle Scholar
  43. 43.
    Dalland, J. I., Vernon, J. A., and Peterson, E. A. Hearing and cochlear microphonic potentials in the bat Eptesicus fuscus. J. Neurophysiol., 30, 697–709. 1967.PubMedGoogle Scholar
  44. 44.
    David, A. Can young bats communicate with their parents at a distance? J. Bombay Natur. Hist. Soc, 65, 210. 1968.Google Scholar
  45. 45.
    Dunning, D. C., and Roeder, K. D. Moth sounds and the insect catching behaviour of bats. Science, 147, 173–174. 1965.PubMedCrossRefGoogle Scholar
  46. 46.
    Dziedzic, A. Quelques performances des systèmes de detection par echos des chauve-souris et de delphinidae. Rev. Acoust., 1, 23–28. 1968.Google Scholar
  47. 47.
    Engelstätter, R. Einzelzeilantworten aus dem Colliculus inferior von Rhinolophus ferrumequinum auf Reizung mit Rauschen unterschiedlicher Bandbreite und Kombinationen von Rauschen und Reintönen. Diplomarbeit, Fachbereich Biologie, Universität Frankfurt, 1978.Google Scholar
  48. 48.
    Escudie, B. Etat actuel des travaux sur les “sonars biologique”, comparaison des propriétés de ces systemes avec les systèmes artificiels. I. C. P. I. de Lyon, Report TS 72/02. 1972.Google Scholar
  49. 49.
    Escudie, B., and Hellion, A. Comparison entre certains signaux optimaux a grand Bt et ceux utilisés par les chauve-souris, in: C. R. du contrat DRME 72419, “Modèle de reception acoustique biologique.,.”, 1973.Google Scholar
  50. 50.
    Fairbanks, J. T. Detection and triggering device for research on bat-echolocation systems. Mass. Inst. Techn. Res. Lab. Electr. Quart. Prog. Rep., 86, 337–338. 1967.Google Scholar
  51. 51.
    Feng, A. S., Simmons, J. A., and Kick, S. A. Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus. Science, 202, 645–648. 1978.PubMedCrossRefGoogle Scholar
  52. 52.
    Fenton, M. B. The role of echolocation in the evolution of bats. American Naturalist, 108, 386–388. 1974.CrossRefGoogle Scholar
  53. 53.
    Fenton, M. B. Acuity of echolocation in Collocalia hirundinacea (Aves: Apodidae), with comments on the distribution of echolocating swiftlets and Molossid bats. Biotropica, 7, 1–7. 1975.CrossRefGoogle Scholar
  54. 54.
    Fenton, M. B. Observations on the biology of some Rhodesian bats, including a key to the Chiroptera of Rhodesia. Life Sciences Contribution, Royal Ontario Museum, No. 104, 1–27. 1975.CrossRefGoogle Scholar
  55. 55.
    Fenton, M. B., Boyle, N. G. H., Harrison, T. M., and Oxley, D. J. Activity patterns, habitat use and prey selection by some African insectivorous bats. Biotropica, 9, 73–85. 1977.CrossRefGoogle Scholar
  56. 56.
    Fenton, M. B., Cumming, D. H. M., and Oxley, D. J. Prey of bat hawks and availability of bats. Condor, 79. 495–497. 1977.CrossRefGoogle Scholar
  57. 57.
    Fenton, M. B., Jacobson, S. L., and Stone, R. N. An automatic ultrasonic sensing system for monitoring the activity of some bats. Can. J. Zool., 51, 291–299. 1973.CrossRefGoogle Scholar
  58. 58.
    Firbas, W. The number of neurons in the cochlea of some bats. J. Mammal., 51, 809–810. 1970.CrossRefGoogle Scholar
  59. 59.
    Firbas, W. Über anatomische Anpassungen des Hörorgans an die Aufnahme hoher Frequenzen. (Eine vergleichend-anatomische Untersuchung an Fledermäusen.) Monatsschr. Ohrheilk. Laryng. Rhin., 106, 105–156. 1972.Google Scholar
  60. 60.
    Firbas, W., and Einzinger, H. Über das Ganglion spirale der Chiroptera. Z. Säugetierkunde, 37, 321–326. 1972.Google Scholar
  61. 61.
    Firbas, W., Welleschik, B. Über die Verteilung der Acetylcholin-esterase-Aktivität im Cortischen Organ von Fledermäusen. Acta Oto-Laryng., 70, 329–335. 1970.CrossRefGoogle Scholar
  62. 62.
    Flieger, E., and Schnitzler, H.-U. Ortungsleistungen der Fledermaus Rhinolophus ferrumequinum bei ein- und beidseitiger Ohrverstopfung. J. comp. Physiol., 82, 93–102. 1973.CrossRefGoogle Scholar
  63. 63.
    Friend, J. H., Suga, N., and Suthers, R. A. Neural responses in the inferior colliculus of echolocating bats to artificial orientation sounds and echoes. J. Cell. Comp. Physiol., 67, 319–332. 1966.CrossRefGoogle Scholar
  64. 64.
    Fullard, J. H., and Fenton, M. B. Acoustic and behavioural analysis of the sounds produced by some species of Neoarctic Arctiidae (Lepidoptera). Can. J. Zool., 55, 1213–1224. 1977.CrossRefGoogle Scholar
  65. 65.
    Funakoshi, K., and Uchida, T. A. Studies on the physiological and ecological adaptations of temperate insectivorous bats. I. Feeding activities in the Japanese long-fingered bats. Japanese J. Ecol., 25, 217–234. 1975.Google Scholar
  66. 66.
    Glaser, W. Eine systemtheoretische Interpretation der Fledermausortung. Studia Biophysica, 27, 103–110. 1971.Google Scholar
  67. 67.
    Glaser, W. Zur Fledermausortung aus dem Gesichtspunkt der Theorie gestörter Systeme. Zool. Jb. Physiol., 76, 209–229. 1971.Google Scholar
  68. 53.
    Glaser, W. Zur Hypothese des Optimal empfang s bei der Fledermausortung. J. comp. Physiol., 94, 227–248. 1974.CrossRefGoogle Scholar
  69. 69.
    Goldman, L. J., Henson, O. W. Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav. Ecol. Sociobiol., 2, 411–420. 1977.CrossRefGoogle Scholar
  70. 70.
    Gould, E. “Echolocation and communication in bats.” Southern Methodist University Press, Dallas, Texas 75222, 1970.Google Scholar
  71. 71.
    Gould, E. Individual recognition by ultrasonic communication between mother and infant bats (Myotis), in: “Animal Orientation and Navigation,” S. R. Galler, K. Schmidt-König, G. J. Jacobs, R. E. Belleville, eds. NASA Press, Virginia, USA, 1970.Google Scholar
  72. 72.
    Gould, E. Neonatal vocalizations in bats of eight genera. J. Mammal., 56, 15–29. 1975.PubMedCrossRefGoogle Scholar
  73. 73.
    Gould, E. Experimental studies on the ontogeny of ultrasonic vocalizations in bats. Dev. Psychobiol., 8, 333–346. 1975.PubMedCrossRefGoogle Scholar
  74. 74.
    Gould, E., Lemkau, P. V., and Hume, J. C. “Ontogeny of Echolocation in Bats.” J. Hopkins Univ., Dept. Mental Hygiene, Baltimore, MD. 21218, 1972. 105 pp.Google Scholar
  75. 75.
    Greguss, P. Bioholography — a new model of information processing. Nature, 219, 482. 1968.PubMedCrossRefGoogle Scholar
  76. 75.
    Greguss, P. Variable holography. Laser in der Forschung, (2), 43–46, (3), 57–60. 1969.Google Scholar
  77. 77.
    Griffin, D. R. Discriminative echolocation by bats, in: “Animal Sonar Systems,” R. G. Busnel, ed., pp. 273–306. Lab. Physiol. Acoust., C. N. R. Z., Jouy-en-Josas, France, 1967.Google Scholar
  78. 78.
    Griffin, D. R. Migration and homing of bats, in: “Biology of Bats,” Vol. I, W. A. Wimsatt, ed. Academic Press, New York, 1970.Google Scholar
  79. 79.
    Griffin, D. R. The importance of atmospheric attenuation for the echolocation of bats. Anim. Behav., 19, 55–61. 1971.PubMedCrossRefGoogle Scholar
  80. 80.
    Griffin, D. R. Comments on animal sonar symposium. J. Acoust. Soc. Am., 54, 137–138. 1973.CrossRefGoogle Scholar
  81. 81.
    Griffin, D. R. Echolocation, in: “Basic Mechanisms in Hearing,” A. Møller, ed. Academic Press, New York, 1973.Google Scholar
  82. 82.
    Griffin, D. R. “The Sensory Physiology of Animal Orientation.” Harvey Lectures Series 71, Academic Press, New York, 1978.Google Scholar
  83. 83.
    Griffin, D. R., Friend, J. H., and Webster, F. A. Target discrimination by echolocation in bats. J. Exp. Zool., 158, 155–168. 1965.PubMedCrossRefGoogle Scholar
  84. 84.
    Griffin, D. R., and Simmons, J. A. Echolocation of insects by horseshoebats. Nature, 250, 731–732. 1974.CrossRefGoogle Scholar
  85. 85.
    Grinnell, A. D. Mechanisms of overcoming interference in echolocating animals, in: “Animal Sonar Systems,” R. G. Busnel, ed., pp. 451–481. Lab. Physiol. Acoust., C. N. R. Z., Jouy-en-Josas, France, 1967.Google Scholar
  86. 86.
    Grinnell, A. D. Comparative physiology of hearing. Ann. Rev. Physiol., 31, 545–580. 1969.CrossRefGoogle Scholar
  87. 87.
    Grinnell, A. D. Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z. vergl. Physiol., 68, 117–153. 1970.CrossRefGoogle Scholar
  88. 88.
    Grinnell, A. D. Neural processing mechanisms in echolocating bats, correlated with differences in emitted sounds. J. Acoust. Soc. Am., 54, 147–156. 1973.PubMedCrossRefGoogle Scholar
  89. 89.
    Grinnell, A. D. Rebound excitation (off-responses) following non neural suppression in the cochleas of echolocating bats. J. comp. Physiol., 82, 172–194. 1973.CrossRefGoogle Scholar
  90. 90.
    Grinnell, A. D., and Brown, P. Long-latency “subthreshold” collicular responses to the constant-frequency components emitted by a bat. Science, 202, 996–999. 1978.PubMedCrossRefGoogle Scholar
  91. 91.
    Grinnell, A. D., and Grinnell, V. S. Neural correlates of vertical localization by echolocating bats. J. Physiol., 181, 830–851. 1965.PubMedGoogle Scholar
  92. 92.
    Grinnell, A. D., and Hagiwara, S. Adaptation of the auditory system for echolocation: studies of New Guinea bats. Z. vergl. Physiol., 76, 41–81. 1972.CrossRefGoogle Scholar
  93. 93.
    Grinnell, A. D., and Hagiwara, S. Studies of auditory neurophysiology in non-echolocating bats, and adaptations for echolocation in one genus Rousettus. Z. vergl. Physiol., 76, 82–96. 1972.CrossRefGoogle Scholar
  94. 94.
    Grinnell, A. D., and Schnitzler, H.-U. Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum. II. Behavioral directionality of hearing. J. comp. Physiol., 116, 63–76. 1977.CrossRefGoogle Scholar
  95. 95.
    Gunier, W. Experimental homing of gray bats to a maternity colony in a Missouri barn. Am. Midl. Nat., 86, 502–506. 1971.CrossRefGoogle Scholar
  96. 96.
    Habersetzer, J. Ortungslaute der Mausohrfledermaus (Myotis myotis) in verschiedenen Ortungssituationen. Verh. Dtsch. Zool. Ges., 1978, 196, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  97. 97.
    Hall, J. G. The cochlea and the cochlear nuclei in the bat. Acta Otolaryngol., 67, 490–500. 1969.PubMedCrossRefGoogle Scholar
  98. 98.
    Halls, J. A. T. Radar studies of the bat sonar. Proc. 4th. Int. Bat Res. Conf. Kenya Literat. Bureau, Nairobi (eds. Olembo als.), 137–142. 1978.Google Scholar
  99. 99.
    Harrison, J. B. Temperature effects on responses in the auditory system of the little brown bat Myotis 1. lucifugus. Physiol. Zool., 38, 34–48. 1965.Google Scholar
  100. 100.
    Henson, M. M. Unusual nerve-fibre distribution in the cochlea of the bat Pteronotus p. parnellii (Gray). J. Acoust. Soc. Am., 53, 1739–1740. 1973.CrossRefGoogle Scholar
  101. 101.
    Henson, M. M. The basilar membrane of the bat, Pteronotus p. parnellii. American J. Anat., 153, 143–158. 1978.CrossRefGoogle Scholar
  102. 102.
    Henson, M. M. Structural changes in the inner ear of the bat, Pteronotus p. parnellii after overstimulation with constant frequency signals. Amer. J. Anat., 190, 610 (Abst.). 1978.Google Scholar
  103. 103.
    Henson, M. M., and Lay, D. M. Scanning electron microscopy of the basilar membrane. Anat. Rec, 184, 425 (Abst.). 1976.Google Scholar
  104. 104.
    Henson, O. W. The activity and function of the middle-ear muscles in echolocating bats. J. Physiol., 180, 871–887. 1965.PubMedGoogle Scholar
  105. 105.
    Henson, O. W. Fluctuations of middle ear air pressure in bats. Anat. Rec, 151, 456. 1965.Google Scholar
  106. 106.
    Henson, O. W. Comparative physiology of middle ear muscle activity during echolocation in bat. Amer. Zool., 6, 603. 1966.Google Scholar
  107. 107.
    Henson, O. W. Auditory sensitivity in Molossidae. Anat. Rec, 157, 363–364. 1967.Google Scholar
  108. 108.
    Henson, O. W. The perception and analysis of biosonar signals by bats, in: “Animal Sonar Systems,” R. G. Busnel, ed., II., pp. 949–1003. Lab. Physiol. Acoust., C.N.R.Z., Jouy-en-Josas, France, 1967.Google Scholar
  109. 109.
    Henson, O. W. Neuroanatomical and physiological correlates of acoustic orientation. Anat. Rec, 163, 305 (Abst.). 1969.Google Scholar
  110. 110.
    Henson, O. W. The central nervous system of Chiroptera, in: “Biology of Bats,” W. A. Wimsatt, ed., chap. 2, 57–152. Academic Press, New York, 1970.Google Scholar
  111. 111.
    Henson, O. W. The ear and audition, in: “Biology of Bats,” W. A. Wimsatt, ed., vol. II, chap. 4. Academic Press, New York, 1971.Google Scholar
  112. 112.
    Henson, O. W. Comparative anatomy of the middle ear, in: “Handb. Sens. Physiol.”, W. D. Keidel and W. D. Neff, eds., vol. V, pp. 39–100. Springer Verlag, Berlin, Heidelberg, New York, 1974.Google Scholar
  113. 113.
    Henson, O. W., Eager, R. P., and Henson, M. M. Tecto-cerebellar projections in the bat Tadarida brasiliensis. Anat. Rec., 160, 473–474 (Abst.). 1968.Google Scholar
  114. 114.
    Henson, O. W., and Henson, M. M. Middle ear muscle contractions and their relation to pulse- and echo-evoked potentials in the bat, in: “Animal Orientation and Navigation,” S. R. Galler et al., eds., NASA Press, Washington, 1972.Google Scholar
  115. 115.
    Henson, O. W., and Pollak, G. D. A technique for chronic implantation of electrodes in the cochlea of bats. Physiol. Behav. 8, 1185–1187. 1972.PubMedCrossRefGoogle Scholar
  116. 116.
    Henson, O. W., and Pollak, G. D., and Novick, A. Continuous monitoring of cochlear potentials and middle ear muscle activity in echolocating bats. Anat. Rec, 172. 328. 1972.Google Scholar
  117. 117.
    Hinchcliffe, R., and Pye, A. The cochlea in Chiroptera: a quantitative approach. Int. Audiol., 7, 259–266. 1968.CrossRefGoogle Scholar
  118. 118.
    Hinchcliffe, R., and Pye, A. Variations in the middle ear of the mammalia. J. Zool., 157, 277–288. 1969.CrossRefGoogle Scholar
  119. 119.
    Hooper, J. H. D. Potential use of a portable ultrasonic receiver for the field identification of flying bats. Ultrasonics, 7, 177–181. 1969.CrossRefGoogle Scholar
  120. 120.
    Howell, D. J. Acoustic behavior and feeding in Glossophagine bats. J. Mammal., 55, 293–308. 1974.PubMedCrossRefGoogle Scholar
  121. 121.
    Jen, P. H.-S. Coding of the directional information of single neurons in the superior olivary complex of echolocating bats. Ph. D. Thesis, Dept. of Biology, Washington Univ., St. Louis, Missouri, 1974.Google Scholar
  122. 122.
    Jen, P. H.-S. Electrophysiological properties of auditory neurons in the superior olivary complex of echolocating bats. J. comp. Physiol., 128, 47–56. 1978.CrossRefGoogle Scholar
  123. 123.
    Jen, P. H.-S., Alster, H., and Suga, N. Coordinated activity of the middle ear and laryngeal muscle in echolocating bats. J. Acoust. Soc. Am., 57, S42, VII. 1975.CrossRefGoogle Scholar
  124. 124.
    Jen, P. H.-S., Lee, Y. H. The just-noticeable movement speed of obstacles perceived by echolocating bats. J. Acoust. Soc. Am., 64, S88, HH21. 1978.CrossRefGoogle Scholar
  125. 125.
    Jen, P. H.-S., and McCarty, J. K. Bats avoid moving objects more successfully than stationary ones. Nature, London, 275, 743–744. 1978.CrossRefGoogle Scholar
  126. 126.
    Jen, P. H.-S., and McCarty, J. K., and Lee, Y. H. The avoidance of obstacles by little brown bats, Myotis lucifugus. Proc. Fifth Int. Bat. Res. Conf., (in press). 1979.Google Scholar
  127. 127.
    Jen, P. H.-S, and Ostwald, D. J. Response of cricothyroid muscle to frequency-modulated sounds in FM-bats, Myotis lucifugus. Nature, 265, 77–78. 1977.PubMedCrossRefGoogle Scholar
  128. 128.
    Jen, P. H.-S, and Ostwald, D. J. Further study of the electrophysiology of the middle-ear and cricothyroid muscles of FM bats. Nation. Sci. Coun. Mon. (China), V, 1014–1028. 1977.Google Scholar
  129. 129.
    Jen, P. H.-S., Ostwald, J., and Suga, N. Acoustic reflexes of middle-ear and laryngeal muscles in the FM bat Myotis lucifugus. J. Acoust. Soc. Am., 60, S4, B3. 1976.CrossRefGoogle Scholar
  130. 130.
    Jen, P. H.-S., Ostwald, J., and Suga, N. Electrophysiological properties of the acoustic middle ear and laryngeal muscle reflexes in the awake echolocating FM-bats, Myotis lucifugus. J. comp. Physiol., 124, 61–73. 1978.CrossRefGoogle Scholar
  131. 131.
    Jen, P. H.-S., and Suga, N. Coding of directional information by neurons in the superior olivary complex of bats. J. Acoust. Soc. Am., 55, S52. 1974.CrossRefGoogle Scholar
  132. 132.
    Jen, P. H.-S., and Suga, N. Properties of acoustic middle-ear muscle reflex in echolocating bats. J. Acoust. Soc. Am., 56, S4, B7. 1974.CrossRefGoogle Scholar
  133. 133.
    Jen, P. H.-S., and Suga, N. Coordinated activities of middle ear and laryngeal muscles in echolocating bats. Science, 191, 950–952. 1976.PubMedCrossRefGoogle Scholar
  134. 134.
    Jen, P. H.-S., and Suga, N. Difference between CM and N1 tuning curves in the CF-FM bats, Pteronotus parnellii rubiginosus. J. Acoust. Soc. Am., 59, S19, H13. 1976.CrossRefGoogle Scholar
  135. 135.
    Jen, P. H.-S., and Suga, N. Functional properties of the acoustic laryngeal muscle reflex in echolocating bats. J. Acoust. Soc. Am., 59, S1, 0010. 1976.Google Scholar
  136. 136.
    Jen, P. H.-S., and Suga, N. Electrophysiological properties of middle ear and laryngeal muscle in little brown bats. Neurosci. Abst., II, 20. 1976.Google Scholar
  137. 137.
    Jen, P. H.-S., and Suga, N. Physiological properties of middle-ear and laryngeal muscles of echolocating bats. Nation. Sci. Coun. Mon. (China), IV, 2606–2617. 1976.Google Scholar
  138. 138.
    Johnson, R. A. Energy spectrum analysis as a processing mechanism for echolocation. Ph. D. Thesis, Dept. Electr. Engn., Univ. Rochester, N. Y., 1972. xv + 175 pp.Google Scholar
  139. 139.
    Johnson, R. A., Henson, O. W., and Goldman, L. J. Detection of insect wing beats by the bat Pteronotus parnellii. J. Acoust. Soc. Am., 55, 53. 1974.CrossRefGoogle Scholar
  140. 140.
    Johnson, R. A., and Titlebaum, E. L. Energy spectrum analysis a model of echolocation processing. J. Acoust. Soc. Am. (Suppl.), 56, S39. 1974.CrossRefGoogle Scholar
  141. 141.
    Kämper, R., and Schmidt, U. Die Morphologie der Nasenhöhle bei einigen neotropischen Chiropteren. Zoomorphologie, 87, 3–19. 1977.CrossRefGoogle Scholar
  142. 142.
    Khajuria, H. Courtship and mating in Rhinopomah. hardwickei Gray (Chiroptera: Rhinopomatidae). Mammalia, 36, 307–309. 1972.Google Scholar
  143. 143.
    Kindlman, P. J., Berman, L. B., Johnson, R. A., Pollak, G. D., Henson, O. W., and Novick, A. Measurement of “instantaneous” carrier frequency of bat pulses. J. Acoust. Soc. Am., 54, 1380–1382. 1973.CrossRefGoogle Scholar
  144. 144.
    Kolb, A. Ortungsprinzip bei Fledermäusen. Z. Säugetk., 35, 306–320. 1970.Google Scholar
  145. 145.
    Kolb, A., Funktion und Wirkungsweise der Riechlaute der Mausohrfledermaus, Myotis myotis. Z. Säugetk., 41, 226–236. 1976.Google Scholar
  146. 146.
    Kuhn, H. J. Über die Innervation des Kehlkopfes einiger Flughunde (Pteropodidae, Megachiroptera, Mammalia). Zool. Anz., 181, 168–181. 1968.Google Scholar
  147. 147.
    Kulzer, E., and Weigold, H. Das Verhalten der Großen Hufeisennase (Rhinolophus ferrum-equinum) bei einer Flugdressur. Z. Tier-psychol., 47, 268–280. 1978.Google Scholar
  148. 148.
    Ladik, J., and Greguss, P. Possible molecular mechanisms of information storage in the long term memory (bat). Symp. Biol. Hungar., 10, 343–355. 1971.Google Scholar
  149. 149.
    Long, G.R. Masked auditory thresholds from the bat, Rhinolophus ferrumequinum. J. comp. Physiol., 116, 247–255. 1977.CrossRefGoogle Scholar
  150. 150.
    Long, G.R., and Schnitzler, H.-U. Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J. comp. Physiol., 100, 211–219. 1975.CrossRefGoogle Scholar
  151. 151.
    Machmert, H., Theiss, D., and Schnitzler, H.-U. Konstruktion eines Luftultraschallgebers mit konstantem Frequenzgang im Bereich von 15 kHz bis 130 kHz. Acustica, 34, 81–85. 1975.Google Scholar
  152. 152.
    Manabe, T., Suga, N., and Ostwald, J. Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science, 200, 339–342. 1978.PubMedCrossRefGoogle Scholar
  153. 153.
    Manley, G. A., Irvine, D. R. F., and Johnstone, B. M. Frequency response of bat tympanic membrane. Nature, 237, 112–113. 1972.CrossRefGoogle Scholar
  154. 154.
    Manley, J. A., and Johnstone, B. M. A comparison of cochlear summating potentials in the bat and Guinea pig, including temperature effects. J. comp. Physiol., 88, 43–66. 1974.CrossRefGoogle Scholar
  155. 155.
    McCue, J. J. G. Signal processing by the bat Myotis lucifugus. J. Audit. Res., 9, 100–107. 1969.Google Scholar
  156. 156.
    Miline, R., Devecenski, V., and Krstic, R. Effects of auditory stimuli on the pineal gland of hibernating bats. Acta Anat., 73 (Suppl. 56), 293–300. 1969.CrossRefGoogle Scholar
  157. 157.
    Möhres, F. P., and Neuweiler, G. Die Ultraschallorientierung der Großblatt-Fledermäuse (Chiroptera — Megadermatidae). Z. vergl. Physiol., 53, 195–227. 1966.CrossRefGoogle Scholar
  158. 158.
    Möller, J. Die Funktion von Hemmeinflüssen bei Neuronen der lemniscalen Hörbahn bei der Echoortung von Rhinolophus ferrumequinum. Dissertation, Universität Stuttgart, 1977.Google Scholar
  159. 159.
    Möller, J. Response characteristics of inferior colliculus neurons of the awake CF-FM bat Rhinolophus ferrumequinum. II. Two-tone stimulation. J. comp. Physiol. A, 125, 227–236. 1978.CrossRefGoogle Scholar
  160. 160.
    Möller, J. Anpassung von Neuronen der Hörbahn an die Echoortung fliegender Hufeisennasen. Verh. Dtsch. Zool. Ges., 1978, 164, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  161. 161.
    Möller, J., Neuweiler, G., and Zöller, H. Response characteristics of inferior colliculus neurons of the awake CF-FM bat Rhinolophus ferrumequinum. I. Single-tone stimulation. J. comp. Physiol. A, 125, 217–225. 1978.CrossRefGoogle Scholar
  162. 162.
    Mogus, M. A. A theoretical approach to bat echolocation. Ph. D. Dissertation, PA. State Univ., 1970.Google Scholar
  163. 163.
    Müller, H. C. Homing and distance-orientation in bats. Z. Tierpsychol., 23, 403–421. 1966.CrossRefGoogle Scholar
  164. 164.
    Nakajima, Y. Fine structure of the medial nucleus of the trapezoid body of the bat with special reference to two types of synaptic endings. J. Cell Biol., 50, 121–134. 1971.PubMedCrossRefGoogle Scholar
  165. 165.
    Neuweiler, G. Interaction of other sensory systems with the sonar system, in: “Animal Sonar Systems,” R. G. Busnel, ed., vol. I, pp. 509–533. Lab. Physiol. Acoust., C. N. R. Z., Jouyen-Josas, France, 1967.Google Scholar
  166. 166.
    Neuweiler, G. Neurophysiological investigations in the colliculus inferior of Rhinolophus ferrumequinum. Bijdr. Dierk., 40, 59–61, 1970.Google Scholar
  167. 167.
    Neuweiler, G. Neurophysiologische Untersuchungen zum Echoortungssystem der Großen Hufeisennase Rhinolophus ferrum equinum Schreber, 1774. Z. vergl. Physiol., 67, 273–306. 1970.CrossRefGoogle Scholar
  168. 168.
    Neuweiler, G. Frequenzdiskriminierung in der Hörbahn von Säugern. Verh. Dtsch. Zool. Ges., 66, 168–176. 1973.Google Scholar
  169. 169.
    Neuweiler, G. Echoortung, in: “Biophysik,” W. Hoppe, W. Lohmann, H. Markl, H. Ziegler, eds. Springer Verlag, Berlin, Heidelberg, New York, 1977.Google Scholar
  170. 170.
    Neuweiler, G. Recognition mechanisms in echolocation of bats, in: Life Sci. Res. Rep. 5, “Recognition of Complex Acoustic Signals,” Th. H. Bullock, ed. Dahlem Konferenzen, Berlin, 1977.Google Scholar
  171. 171.
    Neuweiler, G. Die Echoortung der Fledermäuse. Rhein. Westf. Akad. Wiss., Vorträge N 272, 57–82. 1978.Google Scholar
  172. 172.
    Neuweiler, G., and Möhres, F. P. The role of spacial memory in the orientation, in: “Animal Sonar Systems,” R. G. Busnel, ed., vol. I, pp. 129–140. Lab. Physiol. Acoust., C.N.R.Z., Jouy-en-Josas, France, 1967.Google Scholar
  173. 173.
    Neuweiler, G., and Möhres, F. P. Die Rolle des Ortsgedächtnisses bei der Orientierung der Großblatt-Fledermaus Megaderma lyra. Z. vergl. Physiol. 57, 147–171. 1967.CrossRefGoogle Scholar
  174. 174.
    Neuweiler, G., Schuller, G., and Schnitzler, H.-U. On- and off-responses in the inferior colliculus of the greater horseshoe bat to pure tones. Z. vergl. Physiol., 74, 57–63. 1971.CrossRefGoogle Scholar
  175. 175.
    Neuweiler, G., and Vater, M. Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus ferrumequinum. J. comp. Physiol. A, 115, 119–133. 1977.CrossRefGoogle Scholar
  176. 176.
    Novick, A. Echolocation of flying insects by the bat (Chilonycteris psilotis). Biol. Bull., 128, 297–314. 1965.CrossRefGoogle Scholar
  177. 177.
    Novick, A. Echolocation in bats: some aspects of pulse design. Amer. Sci., 59, 198–209. 1971.PubMedGoogle Scholar
  178. 178.
    Novick, A. Echolocation in bats: a zoologist’s view. J. Acoust. Soc. Am., 54, 139–146. 1973.CrossRefGoogle Scholar
  179. 179.
    Novick, A. Acoustic orientation, in: “Biology of Bats,” W. A. Wimsatt, ed., vol. III. Academic Press, New York, 1977.Google Scholar
  180. 180.
    Novick, A., and Dale, B. A. Foraging behavior in fishing bats and their insectivorous relatives. J. Mammal., 52, 817–818. 1971.CrossRefGoogle Scholar
  181. 181.
    Novick, A., and Dale, B. A. Bats aren’t all bad. National Geographic, 143, 614–637. 1973.Google Scholar
  182. 182.
    Novick, A., and Leen, N. “The World of Bats.” Holt, Rinehart and Winston, New York, Chicago, San Francisco, 1970.Google Scholar
  183. 183.
    O’Neill, W. E., and Suga, N. Target range-sensitive neurons in the auditory cortex of the mustache bat. Science, 203, 69–73. 1979.PubMedCrossRefGoogle Scholar
  184. 184.
    Ostwald, J. Tonotope Organisation des Hörcortex der CF-FM-Fledermaus Rhinolophus ferrumequinum. Verh. Dtsch. Zool. Ges., 1978, 198, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  185. 185.
    Patterson, A. P., and Hardin, J. W. Flight speed of five species of vespertilionid bats. J. Mamm., 50, 152–153. 1969.CrossRefGoogle Scholar
  186. 186.
    Peff, T. C., and Simmons, J. A. Horizontal-angle resolution by echolocating bats. J. Acoust. Soc. Am., 51, 2063–2065. 1972.CrossRefGoogle Scholar
  187. 187.
    Pirlot, P. Perspectives in sensory-ecological studies of higher vertebrates. Rev. Canad. Biol., 36, 337–350. 1977.PubMedGoogle Scholar
  188. 188.
    Pirlot, P., and Pottier, J. Encephalization and quantitative brain composition in bats in relation to their life habits. Rev. Canad. Biol., 36, 321–336. 1977.PubMedGoogle Scholar
  189. 189.
    Pollak, G. D., Bodenhamer, R., Marsh, D. S., and Souther, A. Recovery cycles of single neurons in the inferior colliculus of unanesthetized bats obtained with frequency-modulated and constant-frequency sounds. J. comp. Physiol. A, 120, 215–250. 1977.CrossRefGoogle Scholar
  190. 190.
    Pollak, G. D., and Henson, O. W. Specialized functional aspects of the middle ear muscle in the bat, Chilonycteris parnellii. J. comp. Physiol., 84, 167–174. 1973.CrossRefGoogle Scholar
  191. 191.
    Pollak, G. D., and Henson, O. W., and Novick, A. Cochlear microphonic audiograms in the pure tone bat Chilonycteris parnellii parnellii. Science, 176, 66–68. 1972.PubMedCrossRefGoogle Scholar
  192. 192.
    Pollak, G. D., Marsh, D., Bodenhamer, R., and Souther, A. Echo-detecting characteristics of neurons in inferior colliculus of unanesthetized bats. Science, 196, 675–678. 1977.PubMedCrossRefGoogle Scholar
  193. 193.
    Pollak, G. D., Marsh, D., Bodenhamer, R., and Souther, A. Characteristics of phasic “on” neurons in the inferior colliculus of unanesthetized bats with observations relating to mechanisms for echo-ranging. J. Neurophysiol., 40, 926–942. 1977.PubMedGoogle Scholar
  194. 194.
    Pollak, G. D., Marsh, D., Bodenhamer, R., and Souther, A. A single-unit analysis of inferior colliculus in unanesthetized bats: Response patterns and spike count functions generated by CF and FM sounds. J. Neurophysiol., 41, 677–691. 1978.PubMedGoogle Scholar
  195. 195.
    Prince, J. H. The use of echo-locating by bats. Australian Nat. Hist., 16, 367–370. 1970.Google Scholar
  196. 196.
    Pye, A. The structure of the cochlea in Chiroptera. I. Microchiroptera: Emballonuroidea and Rhinolophoidea. J. Morph., 118, 495–510. 1966.PubMedCrossRefGoogle Scholar
  197. 197.
    Pye, A. The structure of the cochlea in Chiroptera. II. The Megachiroptera and Vespertilionidea of the Microchiroptera. J. Morph., 119, 101–120. 1966.PubMedCrossRefGoogle Scholar
  198. 198.
    Pye, A. The structure of the cochlea in Chiroptera. III. Microchiroptera: Phyllostomatidae. J. Morph., 121, 241–254. 1967.PubMedCrossRefGoogle Scholar
  199. 199.
    Pye, A. The structure of the cochlea in Chiroptera. A selection of Microchiroptera from Africa. J. Zool., 162, 335–343. 1970.CrossRefGoogle Scholar
  200. 200.
    Pye, A. The aural anatomy of bats. Bijdr. Dierk., 40, 67–70, 1970.Google Scholar
  201. 201.
    Pye, A. Some aspects of cochlear structure and function in bats. Proc. 4th Int. Bat Res. Conf., Kenya Literature Bureau, Nairobi, 73–83. 1971.Google Scholar
  202. 202.
    Pye, A. Comparison of histological changes in the cochlea of the guinea pig and the bat Rousettus after acoustic trauma. Symp. Zool. Soc. London, 37, 97–105. Academic Press, London, 1975.Google Scholar
  203. 203.
    Pye, A. The structure of the cochlea in Chiroptera. Periodicum Biologorum 75, 83–87. 1973.Google Scholar
  204. 204.
    Pye, J. D. Theories of sonar systems and their application to biological organisms (Discussion), in: “Animal Sonar Systems,” R. G. Busnel, ed., pp. 1121–1136. Lab. Physiol. Acoust., C.N.R.Z., Jouy-en-Josas, France, 1967.Google Scholar
  205. 205.
    Pye, A. Synthesizing the waveforms of bats’ pulses, in: “Animal Sonar Systems,” R. G. Busnel, ed., pp. 43–65. Lab. Physiol. Acoust. C. N. R. Z., Jouy-en-Josas, France, 1967.Google Scholar
  206. 206.
    Pye, A. Bats, in: “UFAW Handbook on the Care and Maintenance of Laboratory Animals,” 3rd edn., chap. 31, pp. 491–501. Livingstone, London, 1967,Google Scholar
  207. 207.
    Pye, A. “Bats” — a natural science picture book illustrated by Colin Threadgall. Bodley Head, 1968.Google Scholar
  208. 208.
    Pye, A. Animal sonar in air. Ultrasonics, 6, 32–38. 1968.PubMedCrossRefGoogle Scholar
  209. 209.
    Pye, A. Hearing in bats, in: “Hearing Mechanisms in Vertebrates” A. V. S. de Reuck and J. Knight, eds., pp. 66–84. Churchill, London, 1968,Google Scholar
  210. 210.
    Pye, A. The diversity of bats. Sci. J., 5, 47–52. 1969.Google Scholar
  211. 211.
    Pye, A. Bats and fog. Nature, 229, 572–574. 1971.PubMedCrossRefGoogle Scholar
  212. 212.
    Pye, A. Bimodal distribution of constant frequencies in some hipposiderid bats (Mammalia: Hipposideridae). J. Zool. (Lond.), 166, 323–335. 1972.CrossRefGoogle Scholar
  213. 213.
    Pye, A. Echolocation by constant frequency in bats. Period. Biol., 75, 21–26. (Proc. 3rd Int. Bat Res. Conf., Yugoslavia, 1972) 1973.Google Scholar
  214. 214.
    Pye, A., and Roberts, L. H. Ear movement in a hipposiderid bat. Nature, 225, 285–286. 1970.CrossRefGoogle Scholar
  215. 215.
    Radtke, S. Struktur und Verschaltung des Hörcortex der Großen Hufeisennase (Rhinolophus ferrumequinum). Staatsexamensarbeit, Fachber. Biologie, Univ. Frankfurt/M., 1979.Google Scholar
  216. 216.
    Ramprashad, F., Money, K. E., Landolt, J. P., and Laufer, J. A neuro-anatomical study of the cochlea of the little brown bat, Myotis lucifugus. J. Comp. Neurol., 178, 347–364. 1978.PubMedCrossRefGoogle Scholar
  217. 217.
    Roberts, L. H. Variable resonance in constant frequency bats. J. Zool., 166, 337–348. 1972.CrossRefGoogle Scholar
  218. 218.
    Roberts, L. H. Correlation of respiration and ultrasound production in rodents and bats. J. Zool., 168, 439–449. 1972.CrossRefGoogle Scholar
  219. 219.
    Roberts, L. H. Cavity resonance in the production of orientation cries. Period. Biol., 75, 27–32. (Proc. 3rd Int. Bat Res. Conf.) 1973.Google Scholar
  220. 220.
    Roberts, L. H. Confirmation of the echolocation pulse production mechanisms of Rousettus. J. Mamm., 56, 218–220. 1975.CrossRefGoogle Scholar
  221. 221.
    Roeder, K. D. Acoustic sensory responses and possible bat evasion tactics of certain moths. Can. Soc. Zool. Ann. Meeting Proc, Univ. New Brunswick, Fredericton, pp. 71–78. 1974.Google Scholar
  222. 222.
    Sales, G., and Pye, D. “Ultrasonic Communication by Animals.” Chapman and Hall, London, 1974.CrossRefGoogle Scholar
  223. 223.
    Schlegel, P. Directional coding by binaural brainstem units of the CF-FM bat, Rhinolophus ferrumequinum. J. comp. Physiol., 118, 327–352. 1977.CrossRefGoogle Scholar
  224. 224.
    Schlegel, P. Calibrated earphones for the echolocating bat, Rhinolophus ferrumequinum. J. comp. Physiol., 118, 353–356. 1977.CrossRefGoogle Scholar
  225. 225.
    Schlegel, P., and Suga, N. Recovery cycles of single neurons in the lateral lemniscus and inferior colliculus of echolocating bats. Psychologist, 14 (3). 1971.Google Scholar
  226. 226.
    Schlegel, P., and Vater, M. Vergleichende hörphysiologische Untersuchungen an zwei echo-ortenden Fledermausarten, Molossus ater und Molossus molossus (Molossidae). Verh. Dtsch. Zool. Ges., 1978, 165, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  227. 227.
    Schmidt, U., and Schmidt, Ch. Echolocation performance of the vampire bat (Desmodus rotundus). Z. Tierpsychol., 45, 349–358. 1977.PubMedCrossRefGoogle Scholar
  228. 228.
    Schneider, R. Das Gehirn von Rousettus aegyptiacus (E. Geoffroy 1810) (Megachiroptera, Chiroptera, Mammalia). Abh. senckenb. naturf. Ges. (Frankfurt/M.), 513, 1–160. 1966.Google Scholar
  229. 229.
    Schnitzler, H.-U. Discrimination of thin wires by flying horseshoe bats (Rhinolophidae), in: “Animal Sonar Systems,” R. G. Busnel, ed., pp. 69–87. Lab. Physiol. Acoust., C. N. R. Z., Jouy-en-Josas, France, 1967.Google Scholar
  230. 230.
    Schnitzler, H.-U. Kompensation von Doppler-Effekten bei Hufeisen-Fledermäusen. Naturwissensch., 54, 523. 1967.CrossRefGoogle Scholar
  231. 231.
    Schnitzler, H.-U. Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Z. vergl. Physiol., 57, 376–408. 1968.CrossRefGoogle Scholar
  232. 232.
    Schnitzler, H.-U. Comparison of the echolocation behavior in Rhinolophus ferrum-quinum and chilonycteris rubiginosa. Bijdr. Dierk., 40, 77–80. 1970.Google Scholar
  233. 233.
    Schnitzler, H.-U. Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z. vergl. Physiol., 68, 25–38. 1970.CrossRefGoogle Scholar
  234. 234.
    Schnitzler, H.-U. Fledermäuse im Windkanal. Z. vergl. Physiol., 73, 209–221. 1971.CrossRefGoogle Scholar
  235. 235.
    Schnitzler, H.-U. Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen. Fortschr. Zool., 21, 136–189. 1973.PubMedGoogle Scholar
  236. 236.
    Schnitzler, H.-U. Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. J. comp. Physiol., 82. 79–92. 1973.CrossRefGoogle Scholar
  237. 237.
    Schnitzler, H.-U. Die Echoortung der Fledermäuse, in;“Grzimeks Tierleben”, Ergänzungsbd., “Verhaltensforschung”, 189–204. Kindler Verlag, Zürich, 1974.Google Scholar
  238. 238.
    Schnitzler, H.-U. Die Richtwirkung der Echoortung bei der Großen Hufeisennase. Verh. Dtsch. Zool. Ges. 1976, 267, G. Fischer Verl., Stuttgart, 1976.Google Scholar
  239. 239.
    Schnitzler, H.-U. Die Detektion von Bewegung durch Echoortung bei Fledermäusen. Verh. Dtsch. Zool. Ges. 1978, 16–33, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  240. 240.
    Schnitzler, H.-U., and Grinnell, A. D. Directional sensitivity of echolocation in the horseshoe bat Rhinolophus ferrumequinum. I. Directionality of sound emission. J. comp. Physiol., 116, 51–61. 1977.CrossRefGoogle Scholar
  241. 241.
    Schnitzler, H.-U., Schuller, G., and Neuweiler, G. Antworten des Colliculus inferior der Fledermaus Rhinolophus eureale auf tonale Reizung. Naturw., 58, 627. 1971.CrossRefGoogle Scholar
  242. 242.
    Schnitzler, H.-U., Suga, N., and Simmons, J. A. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. III. Cochlear microphonics and auditory nerve responses. J. comp. Physiol. A, 106, 99–110. 1976.CrossRefGoogle Scholar
  243. 243.
    Schuller, G. Echoortung bei Rhinolophus ferrumequinum mit frequenzmodulierten Lauten. Evoked potentials im Colliculus inferior. J. comp. Physiol., 77. 306–331. 1972.CrossRefGoogle Scholar
  244. 244.
    Schuller, G. The role of overlap of echo with outgoing echolocation sound in the bat Rhinolophus ferrumequinum. Naturw., 61, 171–172. 1974.CrossRefGoogle Scholar
  245. 245.
    Schuller, G. Echo delay and overlap with emitted orientation sounds and Doppler-shift compensation in the bat, Rhinolophus ferrumequinum. J. comp. Physiol. A, 114, 103–114. 1977.CrossRefGoogle Scholar
  246. 246.
    Schuller, G. Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of “CF-FM” bat, Rhinolophus ferrumequinum. Exp. Brain Res., 34, 117–132. 1979.PubMedCrossRefGoogle Scholar
  247. 247.
    Schuller, G., Beuter, K., and Rübsamen, R. Dynamic properties of the compensation system of Doppler shifts in the bat Rhinolophus ferrumequinum. J. comp. Physiol., 97, 113–125. 1975.CrossRefGoogle Scholar
  248. 248.
    Schuller, G., Beuter, K., and Schnitzler, H.-U. Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J. comp. Physiol., 89, 275–286. 1974.CrossRefGoogle Scholar
  249. 249.
    Schuller, G., Neuweiler, G., and Schnitzler, H.-U. Collicular response to the frequency modulated final part of echolocation sounds in Rhinolophus ferrumequinum. Z. vergl. Physiol., 74, 153–155. 1971.CrossRefGoogle Scholar
  250. 250.
    Schuller, G., and Suga, N. Storage of Doppler-shift information in the echolocation system of the “CF-FM”-bat, Rhinolophus ferrumequinum. J. comp. Physiol. A, 105, 9–14. 1976.CrossRefGoogle Scholar
  251. 251.
    Schuller, G., and Suga, N. Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhinolophus ferrumequinum. J. comp. Physiol., 107, 253–262. 1976.CrossRefGoogle Scholar
  252. 252.
    Schweizer, H. Struktur und Verschaltung des Colliculus inferior der Grossen Hufeisennase (Rhinolophus ferrumequinum). Dissertation, Universität Frankfurt am Main, 1978.Google Scholar
  253. 253.
    Segall, W. Auditory region in bats including Icaronycteris index. Fieldiana Zool., 58, 103–108. 1971.Google Scholar
  254. 254.
    Segall, W. The external morphology of the inner ear in bats from the phophorites of Quercy. Fieldiana Geol., 33, 59–81. 1974.Google Scholar
  255. 255.
    Shimozawa, T., Suga, N., Hendler, P., and Schuetze, S. Directional sensitivity of echolocation system in bats producing frequency modulated signals. J. Exp. Biol., 60, 53–69. 1974.PubMedGoogle Scholar
  256. 256.
    Shirley, D. J., and Diercks, K. J. Analysis of the frequency response of simple geometric targets. J. Acoust. Soc. Am., 48, 1275–1282. 1971.CrossRefGoogle Scholar
  257. 257.
    Simmons, J. A. The sonar sight of bats. Psychol. Today, 2, 50–57. 1968.Google Scholar
  258. 258.
    Simmons, J. A. Depth perception by sonar in the bat Eptesicus fuscus. Ph. D. Dissertation, Princeton Univ., (x + 208 pp.), 1968.Google Scholar
  259. 259.
    Simmons, J. A. Acoustic radiation patterns for the echolocating bats, Chilonycteris rubiginosa and Eptesicus fuscus. J. Acoust. Soc. Am., 46, 1054–1056. 1969.CrossRefGoogle Scholar
  260. 260.
    Simmons, J. A. The sonar receiver of the bat. Ann. N. Y. Acad. Sci., 188, 161–174. 1971.PubMedCrossRefGoogle Scholar
  261. 261.
    Simmons, J. A. Narrow band CF-FM echolocation in bats (Summary). J. Acoust. Soc. Am., 50, 148. 1971.CrossRefGoogle Scholar
  262. 262.
    Simmons, J. A. Echolocation in bats: Signal processing of echoes for target range. Science, 171, 925–928. 1971.PubMedCrossRefGoogle Scholar
  263. 263.
    Simmons, J. A. The resolution of target range by echolocating bats. J. Acoust. Soc. Am., 54, 157–173. 1973.PubMedCrossRefGoogle Scholar
  264. 264.
    Simmons, J. A. Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum. J. Acoust. Soc. Am., 56, 672–682. 1974.PubMedCrossRefGoogle Scholar
  265. 265.
    Simmons, J. A. (Rapporteur), et al. Localization and identification of acoustic signals, with reference to echolocation. Group report in: Life Sci. Res. Rep. 5, “Recognition of Complex Acoustic Signals,” Th. H. Bullock, ed. Dahlem Konferenzen, Berlin, 1977.Google Scholar
  266. 266.
    Simmons, J. A., Fenton, M. B., and O’Farrell, M. J. Echolocation and pursuit of prey by bats. Science, 203, 16–21. 1979.PubMedCrossRefGoogle Scholar
  267. 267.
    Simmons, J. A., Howell, D. J., and Suga, N. Information content of bat sonar echoes. Amer. Sci., 63, 204–215. 1975.PubMedGoogle Scholar
  268. 268.
    Simmons, J. A., Lavender, W. A., Lavender, B. A., et al. Target structure and echo spectral discrimination by echolocating bats. Science, 186, 1130–1132. 1974.PubMedCrossRefGoogle Scholar
  269. 269.
    Simmons, J. A., Lavender, W. A., Lavender, B. A., et al. Echolocation by free-tailed bats (Tadarida). J. comp. Physiol., 125, 291–299. 1978.CrossRefGoogle Scholar
  270. 270.
    Simmons, J. A., and O’Farrell, M. J. Echolocation by the long eared bat, Plecotus phyllotis. J. comp. Physiol., 122, 201–214. 1977.CrossRefGoogle Scholar
  271. 271.
    Simmons, J. A., and Vernon, J. A. Echolocation discrimination of targets by the bat Eptesicus fuscus. J. Exp. Zool., 176, 315–328. 1971.PubMedCrossRefGoogle Scholar
  272. 272.
    Skinner, D. P., Altes, R. A., and Jones, J. D. Broadband target classification using a bionic sonar. J. Acoust. Soc. Am., 62, 1239–1246, 1977.CrossRefGoogle Scholar
  273. 273.
    Small, R., and Levine, R. R. Interspecific communication between bats and moth, in: “Course in Animal Communication,” R. G. Busnel, ed. The City College, Paris, 1971.Google Scholar
  274. 274.
    Smith, D. M., Mercer, R. M., Goldman, L. H., Henson, W. W., and Henson, M. M. Phase-locked loop device for the fine frequency analysis of the biosonar signals of bats. J. Acoust. Soc. Am., 61, 1092–1093. 1977,PubMedCrossRefGoogle Scholar
  275. 275.
    Stewart, J. L., and Kasson, J. M. Simulation mechanisms in animal echo ranging. U. S. Gov. Research Dev. Rep., 70. 1970.Google Scholar
  276. 276.
    Stones, R. C., and Branick, L. P. Use of hearing in homing by two species of Myotis bats. J. Mamm., 50, 157–160. 1969.CrossRefGoogle Scholar
  277. 277.
    Strother, G. K. Comments on aural pulse compression in bats and humans. J. Acoust. Soc. Amer., 41, 529. 1967.CrossRefGoogle Scholar
  278. 278.
    Strother, G. K., and Mogus, M. Acoustical beam patterns for bats: Some theoretical considerations. J. Acoust. Soc. Am., 48, 1430–1432. 1970.PubMedCrossRefGoogle Scholar
  279. 279.
    Suga, N. Analysis of frequency-modulated sounds by auditory neurons of echolocating bats. J. Physiol., 179, 26–53. 1965.PubMedGoogle Scholar
  280. 280.
    Suga, N. Functional properties of auditory neurons in the cortex of echolocating bats. J. Physiol., 181, 671–700. 1965.PubMedGoogle Scholar
  281. 281.
    Suga, N. Responses of cortical auditory neurons to frequency modulated sounds in echo-locating bats. Nature, 206, 890–891. 1965.PubMedCrossRefGoogle Scholar
  282. 282.
    Suga, N. Analysis of frequency-modulated and complex sounds by single auditory neurons of bats. J. Physiol., 198, 51–80. 1968.PubMedGoogle Scholar
  283. 283.
    Suga, N. Classification of inferior collicular neurons of bats in terms of responses to pure tones, FM sounds, and noise bursts. J. Physiol., 200, 555–574. 1969.PubMedGoogle Scholar
  284. 284.
    Suga, N. Echo-location and evoked potentials of bats after ablation of inferior colliculus. J. Physiol., 203, 707–728. 1969.PubMedGoogle Scholar
  285. 285.
    Suga, N. Echo-location of bats after ablation of auditory cortex. J. Physiol., 203, 729–739. 1969.PubMedGoogle Scholar
  286. 286.
    Suga, N. Echo-ranging neurons in the inferior colliculus of bats. Science, 170, 449–451. 1970.PubMedCrossRefGoogle Scholar
  287. 287.
    Suga, N. Responses of inferior collicular neurons of bats to tone bursts with different rise times. J. Physiol., 217, 159–177. 1971.PubMedGoogle Scholar
  288. 288.
    Suga, N. Analysis of information-bearing elements in complex sounds by auditory neurons of bats. Audiol., 11, 58–72, 1972.CrossRefGoogle Scholar
  289. 289.
    Suga, N. Neurophysiological analysis of echolocation in bats, in: “Animal Orientation and Navigation,” S. R. Galler et al., eds. NASA Press, Washington, D. C., 1972.Google Scholar
  290. 290.
    Suga, N. Feature extraction in the auditory system of bats, in: “Basic Mechanisms in Hearing,” A. R. Møller, ed., pp. 675–744. Academic Press, New York and London, 1973.CrossRefGoogle Scholar
  291. 291.
    Suga, N. Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science, 196, 64–67. 1977.PubMedCrossRefGoogle Scholar
  292. 292.
    Suga, N. Specialization of the auditory system for reception and processing of species-specific sounds. Federation Proc, 37, 2342–2354. 1978.Google Scholar
  293. 293.
    Suga, N., and Jen, P. H.-S. Muscular control of incoming signals in the auditory system of echolocating bats. J. Acoust. Soc. Am., 55, S52, AA9. 1974.CrossRefGoogle Scholar
  294. 294.
    Suga, N., and Jen, P. H.-S. Peripheral control of acoustic signals in the auditory system of echolocating bats. J. Exp. Biol., 62, 277–311. 1975.PubMedGoogle Scholar
  295. 295.
    Suga, N., and Jen, P. H.-S. Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science, 194, 542–544. 1976.PubMedCrossRefGoogle Scholar
  296. 296.
    Suga, N., and Jen, P. H.-S. Neural vs. mechanical tuning curves in the CF-FM bats Pteronotus parnellii rubiginosus. J. Acoust. Soc. Am., 59, Suppl. No. 1, S18. 1976.CrossRefGoogle Scholar
  297. 297.
    Suga, N., and Jen, P. H.-S. Further studies on the peripheral auditory system of CF-FM bats specialized for fine frequency analysis of Doppler-shifted echoes. J. Exp. Biol., 69, 207–232. 1977.PubMedGoogle Scholar
  298. 298.
    Suga, N., Neuweiler, G., and Möller, J. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J. comp. Physiol. A, 106, 111–125. 1976.CrossRefGoogle Scholar
  299. 299.
    Suga, N., Neuweiler, G., Jen, P. H.-S., and Möller, J. Adaptation of the peripheral auditory system of CF-FM bats for reception and analysis of predominant components in orientation sounds and echoes. J. Acoust. Soc. Am., 59, Suppl. No. 1, S46. 1976.CrossRefGoogle Scholar
  300. 300.
    Suga, N., and O’Neill, W. E. Mechanisms of echolocation in bats — comments on the neuroethology of the biosonar system of CF-FM bats. Trends Neurosc., 1, 35–38. 1978.CrossRefGoogle Scholar
  301. 301.
    Suga, N., and O’Neill, W. E. and Manabe, T. Cortical neurons sensitive to combinations of information-bearing elements of biosonar signals in the mustache bat. Science, 200, 778–781. 1978.PubMedCrossRefGoogle Scholar
  302. 302.
    Suga, N., and O’Neill, W. E. and Manabe, T. Harmonic-sensitive neurons in the auditory cortex of the mustache bat. Science, 203, 270–274. 1979.PubMedCrossRefGoogle Scholar
  303. 303.
    Suga, N., and Schlegel, P. Neural attenuation of responses to emitted sounds in echolocating bats. Science, 177, 82–84. 1972.PubMedCrossRefGoogle Scholar
  304. 304.
    Suga, N., and Schlegel, P. Coding and processing in the auditory systems of FM-Signal producing bats. J. Acoust. Soc. Am., 54, 174–190. 1973.PubMedCrossRefGoogle Scholar
  305. 305.
    Suga, N., and Schlegel, P., Shimozawa, T., and Simmons, J. A. Orientation sounds evoked from echolocating bats by electrical stimulation of the brain. J. Acoust. Soc. Am., 54, 793–797. 1973.PubMedCrossRefGoogle Scholar
  306. 306.
    Suga, N., Schuller, G., and Jen, P. H.-S. Neurophysiological studies on the echolocation system of bats sensitive to Doppler-shifted echoes. J. Acoust. Soc. Am., 60, S4, B2. 1976.CrossRefGoogle Scholar
  307. 307.
    Suga, N., and Shimozawa, T. Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science, 183, 1211–1213. 1974.PubMedCrossRefGoogle Scholar
  308. 308.
    Suga, N., Simmons, J. A., and Jen, P. H.-S. Peripheral specialization for fine analysis of Doppler-shifted echoes in the auditory system of the “CF-FM” bat Pteronotus parnellii. J. Exp. Biol., 63, 161–192. 1975.PubMedGoogle Scholar
  309. 309.
    Suga, N., Simmons, J. A., and Jen, P. H.-S. Peripheral specialization for analysis of Doppler-shifted echoes in the auditory system of the “CF-FM” bat, Pteronotus parnellii. I. Cochlear microphonic. J. Acoust. Soc. Am., 57, S42. 1975.Google Scholar
  310. 310.
    Suga, N., Simmons, J. A., and Jen, P. H.-S. Peripheral specialization for analysis of Doppler-shifted echoes in the auditory system of the “CF-FM” bat, Pteronotus parnellii. II. Properties of peripheral auditory neurons. J. Acoust. Soc. Am., 57, S42. 1975.Google Scholar
  311. 311.
    Suga, N., Simmons, J. A., Shimozawa, T. Neurophysiological studies on echolocation systems in awake bats producing CF-FM orientation sounds. J. Exp. Biol., 61, 379–399. 1974.PubMedGoogle Scholar
  312. 312.
    Suthers, R. A. Acoustic orientation by fish-catching bats. J. Exp. Zool, 158, 319–348. 1965.PubMedCrossRefGoogle Scholar
  313. 313.
    Suthers, R. A. Comparative echolocation by fishing bats. J. Mamm., 48, 79–87. 1967.CrossRefGoogle Scholar
  314. 314.
    Suthers, R. A. Wie orten fischfangende Fledermäuse ihre Beute? Umschau i. W. u. T., 67, 693–696. 1967.Google Scholar
  315. 315.
    Suthers, R. A. A comment on the role of choroidal papillae in the fruit bat retina. Vision Res., 10, 921–922. 1970.PubMedCrossRefGoogle Scholar
  316. 316.
    Suthers, R. A. Vision, olfaction, taste, in: “Biology of Bats,” W. Wimsatt, Ed., vol. II. Academic Press, New York, 1970.Google Scholar
  317. 317.
    Suthers, R. A. Responses of neurons in the visual cortex of the echo-locating bat, Rousettus aegypticus. Proc. East Afr. Acad.Google Scholar
  318. 318.
    Suthers, R. A., and Chase, J. Visual pattern discrimination by an echolocating bat. Amer. Zool., 6, 573. 1966.Google Scholar
  319. 319.
    Suthers, R. A., and Chase, J., and Braford, B. Visual form discrimination by echolocating bats. Biol. Bull, 137, 535–546. 1969.PubMedCrossRefGoogle Scholar
  320. 320.
    Suthers, R. A., and Fattu, J. M. Fishing behaviour and acoustic orientation by the bat (Noctilio labialis). Anim. Behav., 21, 61–66. 1973.PubMedCrossRefGoogle Scholar
  321. 321.
    Suthers, R. A., and Fattu, J. M. Mechanisms of sound production by echolocating bats. Amer. Zool., 13, 1215–1226. 1973.Google Scholar
  322. 322.
    Suthers, R. A., Thomas, St. P., and Suthers, B. J. Respiration, wingbeat and ultrasonic pulse emission in an echo-locating bat. J. Exp. Biol., 56, 37–48. 1972.Google Scholar
  323. 323.
    Suthers, R. A., and Wallis, N. E. Optics of the eye of some echo-locating bats. Vision Res., 10, 1165–1173. 1970.PubMedCrossRefGoogle Scholar
  324. 324.
    Tepaske, E. R. Some morphological aspects and taxonomic relationship of the middle ear in bats. Diss. Abstr., 26, 65–8784 (155 pp.) 1966.Google Scholar
  325. 325.
    Vater, M., and Schlegel, P. Antwortcharakteristika einzelner Neurone im Colliculus inferior der echoortenden Fledermausarten Molossus ater und Molossus molossus auf tonale und FM Signale. Verh. Dtsch. Zool. Ges., 1978, 197, G. Fischer Verl., Stuttgart, 1978.Google Scholar
  326. 326.
    Vernon, J. A., Dalland, J. S., and Wever, E. G. Further studies of hearing in the bat Myotis lucifugus, by means of cochlear potentials. J. Aud. Res., 6, 153–163. 1966.Google Scholar
  327. 327.
    Vernon, J. A., and Peterson, E. A. Echolocation signals in the freetailed bat, Tadarida mexicana. J. Aud. Res., 5, 317–330. 1965.Google Scholar
  328. 328.
    Vernon, J. A., and Peterson, E. A. Hearing in the vampire bat, Desmodus rotundus, as shown by cochlear potentials. J. Aud. Res., 6, 181–187. 1966.Google Scholar
  329. 329.
    Wassif, K., and Madkour, G. M. The anatomy of the hyoid bone, larynx, and upper part of the trachea in some Egyptian bats. Bull. Zool. Soc. Egypt., 22, 15–26. 1969.Google Scholar
  330. 330.
    Webster, F. A. Some acoustical differences between bats and men. Int. Gonf. on Sens. Devices for the Blind, St. Dunstan’s, London, 63–87. 1967.Google Scholar
  331. 331.
    Webster, F. A., and Brazier, O. G. Experimental studies on target detection, evaluation, and interception by echolocating bats. T. D. R. No. AMRL-TR-65–172, Aerospace Medical Div., U. S. A. F. Systems Command. 1965.Google Scholar
  332. 332.
    Webster, F. A., and Brazier, O. G. Experimental studies on echolocation mechanisms in bats. T. D. R. No. AMRL-TR-67–192, Aerospace Medical Div., U. S. A. F. Systems Command. 1968.Google Scholar
  333. 333.
    Webster, F. A., and Brazier, O. G. Echolocation investigations on bats and humans: Target localization evaluation. Sensory Sys. Lab., Tucson Ariz., AD-697 070, pp. 80. 1968.Google Scholar
  334. 334.
    Wickler, W., and Seibt, U. Doppelklick-Orientierungslaute bei einem Epauletten-Flughund. Naturw., 61, 367. 1974.CrossRefGoogle Scholar
  335. 335.
    Williams, T. C. Nocturnal orientation techniques of a neotropical bat. Ph. D. Thesis, Rockefeller Univ., New York, 1968.Google Scholar
  336. 336.
    Williams, T. C., and Williams, J. M. Radio tracking of homing bats. Science, 155, 1435–1436. 1967.PubMedCrossRefGoogle Scholar
  337. 337.
    Williams, T. C., and Williams, J. M. Radio tracking of homing and feeding flights of a neotropical bat Phyllostomus hastatus. Anim. Behav., 18, 302–309. 1970.CrossRefGoogle Scholar
  338. 338.
    Williams, T. C., and Williams, J. M., and Griffin, D. R. The homing ability of the neotropical bat Phyllostomus hastatus with evidence for visual orientation. Anim. Behav., 14, 468–473. 1966.PubMedCrossRefGoogle Scholar
  339. 339.
    Wilson, J. P. Towards a model for cochlear frequency analysis, in: “Psychophysics and Physiol. Hearing,” E. F. Evans and J. P. Wilson, eds. Academic Press, New York, 1977.Google Scholar
  340. 340.
    Wimsatt, W. A., ed. “Biology of Bats,” vol. I — III. Academic Press, New York, 1970.Google Scholar
  341. 341.
    Woolf, N. The ontogeny of bat sonar sounds: With special emphasis on sensory deprivation. Sc. D. Thesis, J. Hopkins Univ., Baltimore, 1974.Google Scholar
  342. 342.
    Yalden, D. W., and Morris, P. A. “The Lives of Bats.” Quadrangle/The New York Times Book Co., New York, 1975.Google Scholar
  343. Abramov, A. P., Golubkov, A. G., Yershova, I. V., Fradkin, V. G. and Korolev, V. I., 1972, Investigation of the dolphin’s ability to differentiate the volume of objects according to dimensions and materials, in: “Problemy Biologicheskey Kibernetiki”, A. I. Berg, ed., Isdatelstvo Nauka, Leningrad.Google Scholar
  344. Abramov, A. P., Ayrapet’yants, E. Sh., Burdin, V. I., Golubkov, A. G., Yershova, I. V., Zhezherin, A. R., Korolev, V. I., Malyshev, Yu. A., Ul’yanov, G. K., and Fradkin, V. G., 1971, Investigations of delphinid capacity to differentiate between three-dimensional objects according to linear size and material, “Report from the 7th All-Union Acoustical Conference”, Leningrad, as cited in: Bel’kovich, V. M. and Dubrovskiy, N.A., 1976, “Sensory Bases of Cetacean Orientation”, Nauka, Leningrad (English translation JPRS L/7157).Google Scholar
  345. Ackman, R. G., Eaton, C. A., and Litchfield, C., 1971, Composition of wax esters, triglycerides and diacyl glyceryl ethers in the jaw and blubber fats of the Amazon river dolphin (Inia geoffrensis), Lipids, 6:69.PubMedCrossRefGoogle Scholar
  346. Ackman, R. G., Sipos, J. C., Litchfield, C., and Hilaman, B., 1972, Characterization of unusual wax esters from the jaw fat of the Atlantic bottle-nosed dolphin (Tursiops truncatus), Jour. Am. Oil Chem. Soc, 49:305.Google Scholar
  347. Ackman, R. G., Sipos, J. C., Eaton, C. A., Hilaman, B. L. and Litchfield, C., 1973, Molecular species of wax esters within jaw fat of the Atlantic bottlenosed dolphin, Tursiops truncatus, Lipids, 8:661.CrossRefGoogle Scholar
  348. Agarkov, G. B., 1969, Soviet cetacean morphology research outlined, Vestnik Akademii Nauk, 38(8):58.Google Scholar
  349. Agarkov, G. B. and Khomenko, B. G., 1973, Morphological and functional analysis of certain sensory areas of the dolphin’s head, IV-oe Vsesoyuznoye soveshchaniye po Bionike, 4:1.Google Scholar
  350. Agarkov, G. B. and Valiulina, F. G., 1974, The issue of the innervation of the mandibular region of the common dolphin, Bionika, 8:117.Google Scholar
  351. Agarkov, G. B., Khomenko, B. G., and Khadzhinskiy, V. G., 1974, in: “Morphology of Delphinidae”, Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  352. Agarkov, G. B., Solukha, B. V., and Khomenko, B. G., 1971, Fcholocation capacity of dolphins, Bionika, 5:52.Google Scholar
  353. Agarkov, G. B., Solukha, B. V., and Khomenko, B. G., 1973, On the hydrolocation capability of dolphins, National Translation Center, 75:7.Google Scholar
  354. Agarkov, G. B., Solukha, B. V., and Zakletskiy, A. V., 1975, Convergence in structure and function of the auditory system of fish, amphibians, reptiles, birds and mammals, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  355. Alexeyeva, T. V., Golubkov, A. G., and Ershova, I. V., 1971, On the problem of the active width of the spectrum of dolphins’ echolocation signals, Trudy Akusticheskogo Instituta 17:99.Google Scholar
  356. Altes, R. A., 1971, Computer derivation of some dolphin echolocation signals, Science, 173:912.PubMedCrossRefGoogle Scholar
  357. Altes, R. A., 1973, Study of animal signals and neural processing with application to advanced sonar systems, ESL Inc. Rpt. No. 115.Google Scholar
  358. Altes, R. A., 1974, Study of Animal Sensory Systems with Application to Sonar, ESL Inc. Rpt. No. 144.Google Scholar
  359. Altes, R. A., 1976, Sonar for generalized target description and its similarity to animal echolocation systems, Jour. Acous. Soc. Amer., 59:97.CrossRefGoogle Scholar
  360. Altes, R. A., 1977, Localization in cetacean echolocation, in: “Proceedings (Abstracts) Second Conference On The Biology of Marine Mammals”, San Diego.Google Scholar
  361. Altes, R. A., and Skinner, D. P., 1977, Sonar velocity resolution with a linear-period-modulated pulse, Jour. Acoust. Soc. Amer., 61:1019.CrossRefGoogle Scholar
  362. Altes, R. A., Evans, W. E., and Johnson, C. S., 1975, Cetacean echolocation signals and a new model for the human glottal pulse, Jour. Acoust. Soc. Amer., 57:1221.CrossRefGoogle Scholar
  363. Andersen, H. T. (ed.), 1969, “The Biology of Marine Mammals”, Academic Press, New York.Google Scholar
  364. Andersen, S., 1970, Auditory sensitivity of the harbour porpoise Phocoena phocoena, in: “Investigations on Cetacea”, G. Pilleri, ed., Bentelli AG., Berne.Google Scholar
  365. Andersen, S., 1970, Directional hearing in the harbour porpoise Phocoena phocoena, in: “Investigations on Cetacea Vol. 2”, G. Pilleri, ed., Bentelli AG., Berne.Google Scholar
  366. Andersen, S., 1971, Orientierung hos delphiner, Nat. Verden, 5:181.Google Scholar
  367. Andersen, S. and Pilleri, G., 1970, Audible sound production in captive Platanista gangetica., in: “Investigations on Cetacea Vol. 2”, G. Pelleri, ed., Bentelli AG., Berne.Google Scholar
  368. Asa-Dorian, P. V. and Perkins, P. J., 1967, The controversial production of sound by the California gray whale, Eschrichtius robustus Norsk Hvalfangsttid, 56:74.Google Scholar
  369. Au, W. W. L., 1977, Target analysis using simulated dolphin echolocation signals, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals, San Diego.Google Scholar
  370. Au, W. W. L. and Hammer, C., 1978, Analysis of target recognition via echolocation by an Atlantic bottlenose porpoise (Tursiops truncatus), Jour. Acoust. Soc. Amer., 60:587.Google Scholar
  371. Au, W. W. L., Floyd, R. W., and Haun, J. E., 1978, Propagation of Atlantic bottlenose dolphin echolocation signals, Jour. Acoust. Soc. Amer., 64:411.CrossRefGoogle Scholar
  372. Au, W. W. L., Floyd, R. W., Penner, R. H. and Murchison, A. E., 1974, Measurement of echolocation signals of the Atlantic bottle-nose dolphin, Tursiops truncatus (Montagu), in open waters, Jour. Acoust. Soc. Amer., 56:1280.CrossRefGoogle Scholar
  373. Audouin, F., 1967, Etude bionique de l’auto-information par echoacoustiques dans le regne animal, Rapport techn. du Marche DRME n°66–34179–00–480–75–05, Thomson-Houston, Vol. II.Google Scholar
  374. Awbrey, F. T., 1979, Background study of acoustical and bioacoustical factors in tuna fishing productivity and associated porpoise mortality, Fish. Bull. (in press).Google Scholar
  375. Ayrapet’yants, E. Sh. and Konstantinov, A. I., 1970, “Echolocation in Nature”, Nauka, Leningrad (English translation JPRS 63328).Google Scholar
  376. Ayrapet’yants, E. Sh. and Konstantinov, A. I., 1976, Physiological investigations of ultrasonic echolocation in animals, Paper presented at the 25th International Congress of Physiol. Sciences, Munich.Google Scholar
  377. Ayrapet’yants, E. Sh., Konstantinov, A. I., and Matjushkin, D. P., 1969, Brain echolocation mechanisms and bionics, Acta Physiol. Acad. Sci. Hung., 35:1.Google Scholar
  378. Ayrapet’yants, E. Sh., Golubkov, A. G., Yershova, I. V., Zhezherin, A. R., Zvorkin, V. N., and Korolev, V. I., 1969, Echolocation differentiation and characteristics of radiated pulses in dolphins, Report of the Academy of Science of the USSR, 188:1197 (English translation JPRS 49479).Google Scholar
  379. Ayrapet’yants, E. Sh., Voronov, V. A., Ivanenko, Y. V., Ivanov, M. P., Ordovskii, D. L., Sergeev, B. F., and Chilingiris, V. I., 1973, The physiology of the sonar system of Black Sea dolphins, Jour. Evol. Biochem. Physiol., 9:364 (English translation JPRS 60298).Google Scholar
  380. Babkin, V. P., and Dubrovskiy, N.A., 1971, Range of action and noise stability of the echolocation system of the bottlenose dolphin in detection of various targets, Tr. Akust. Inst., Moscow, 17:29, as cited in: Bel’kovich, V. M. and Dubrovskiy, N. A., 1976, “Sensory Bases of Cetacean Orientation”, Nauka, Leningrad (English translation JPRS L/7157).Google Scholar
  381. Babkin, V. P., Dubrovskiy, N. A., Krasnov, P. S, and Titov, A. A., 1971, Discrimination of material of spherical targets by the bottlenose Dolphin, in: “Report from the 7th All-Union Acoustical Conference, Leningrad”.Google Scholar
  382. Backus, R. H. and Schevill, W. E., 1966, Physeter clicks, in: “Whales, Dolphins, and Porpoises”, K. S. Norris, ed., Univ. California Press, Berkeley.Google Scholar
  383. Bagdonas, A., Bel’kovich, V. M., and Krushinskaya, N. L., 1970, Interaction of analyzers in dolphins during discrimination of geometrical figures under water, Jour. Higher Neural Act., 20:1070 (English translation in: “A Collection of Translations of Foreign Language Papers on the Subject of Biological Sonar Systems”, K. J. Diercks, 1974, ed., Applied Research Lab, U. of Texas, Austin, Tech. Rept. 74–9).Google Scholar
  384. Barham, E. G., 1973, Whales’ respiratory volume as a possible resonant receiver for 20 Hz signals, Nature, 245:220.CrossRefGoogle Scholar
  385. Barta, R. E., 1969, Acoustical pattern discrimination by an Atlantic bottlenosed dolphin, unpublished manuscript, Naval Undersea Center, San Diego, CA.Google Scholar
  386. Bastian, J., 1967, The transmission of arbitrary environmental information between bottle-nose dolphins, U. S. Naval Ordnance Test Stat., China Lake, Calif., NOTS TP 4117.Google Scholar
  387. Bastian, J., Wall, C., and Anderson, C. L., 1968, Further investigations of the transmission of arbitrary information between bottlenose dolphins, NUWC TP 109.Google Scholar
  388. Bateson, G., 1966, Problems in cetacean and other mammalian communication, in: “Whales, Dolphins, and Porpoises”, K. S. Norris, ed., Univ. of Calif., Berkeley.Google Scholar
  389. Beach, F. A. III, and Herman, L. M., 1972, Preliminary studies of auditory problem solving and intertask transfer by the bottlenose dolphin, Psychological Record, 22:49.Google Scholar
  390. Beach, F. A. III, Pepper, R. L., Nachtigall, P. E., Simmons, J. V., and Siri, P. A., 1974, Spatial habit reversal in two species of marine mammals, Psychological Record, 24:385.Google Scholar
  391. Beamish, P., 1971, Biological sonar of diving mammals, an analytical model, in: “Proc. 7th Annu. Conf. Biol. Sonar and Diving Mamm., Stanf. Res. Inst.”, Menlo Park, Calif.Google Scholar
  392. Beamish, P., 1972, Whale sonar, in: “Proc. 10th Annu. Meeting Canadian Committee on Acoustics”, R. J. Donato, ed., Nation. Res. Council, Ottawa.Google Scholar
  393. Beamish, P., and Mitchell, E., 1971, Ultrasonic sounds recorded in the presence of a blue whale Balaenoptera musculus, Deep-Sea Res., 18:803.Google Scholar
  394. Beamish, P., and Mitchell, E., 1973, Short pulse length audio frequency sounds recorded in the presence of a Minke whale Balaenoptera acutorostrate, Deep-Sea Res., 20:375.Google Scholar
  395. Bel’kovich, V. M., 1970, About “Acoustical Vision” in the dolphin. Experimental matters. Ekologia, 6:89.Google Scholar
  396. Bel’kovich, V. M. and Borisov, V. I., 1971, Locational discrimination of figures of complex configuration by dolphins, Trudy Akusticheskogo Institute, 17:19.Google Scholar
  397. Bel’kovich, V. M. and Dubrovskiy, N. A.,1976, “Sensory Bases of Cetacean Orientation”, Nauka, Leningrad (English translation JPRS L/7157).Google Scholar
  398. Bel’kovich, V. M. and Gurevich, V. S. 1969, The whales (Cetacea, Odontoceti) are the experimental animals, “Scientific Conference on Problems of the World Ocean”, M:16.Google Scholar
  399. Bel’kovich, V. M. and Gurevich, V. S., 1970, Problems on keeping of the dolphins in captivity and performing experimental work with them, JLn: “Collection Material of the Conference ‘Ocean’”, Moscow:108–112.Google Scholar
  400. Bel’kovich, V. M. and Nesterenko, I., 1971, How the dolphin’s locator operates, Priroda., 7:71 (German translation by W. Petri, 1974, Naturwissenschaftliche Rundschau, 0004:0143).Google Scholar
  401. Bel’kovich, V. M., and Resnikov, A. Ye., 1971, What’s new in dolphin sonar, Priroda, 11:84.Google Scholar
  402. Bel’kovich, V. M. and Solntzeva, G. N., 1970, Anatomy and function of the ear in the dolphin, Zoolischeskiy Zhurnal, 49(2):275. (English translation JPRS 50253).Google Scholar
  403. Bel’kovich, V. M., Borisov, V. I., Gurevich, V. S., 1970, Angular resolution by echolocation in Delphinus delphis, in: “Proceedings of Scientific Technical Conference, Ministry of Higher and Secondary Specialized Education RSFSR, Leningrad” (English translation in: “A Collection of Translations of Foreign Language Papers on the Subject of Biological Sonar Systems”, K. J. Diercks, 1974, ed., Applied Research Lab, Univ. of Texas, Austin, Tech. Rept. 74–9).Google Scholar
  404. Bel’kovich, V. M., Gurevich, V. S., and Borisov, V. I., 1970, Discrimination by the dolphins of the geometrical figures according to the angle, in: “The 23rd Scientific-Technical Conference of the LIAP”, Leningrad.Google Scholar
  405. Bel’kovich, V. M., Andreyev, F. V., Vronskaya, S. D., and Cherdantsev, A. I., 1975, Investigation of orientation and behavior of wild bottlenose dolphins (Tursiops truncatus), in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Isdatel’stvo Naukova Dumka Kiev.Google Scholar
  406. Bel’kovich, V. M., Bagdonas, A. P., Gurevich, V. S., and Krushinskaya, N. L., 1969, Echolocation of the toothed whales (Cetacea), “Scientific Conference of Problems of the World Ocean”.Google Scholar
  407. Bel’kovich, V. M., Borisov, V. I., Gurevich, V. S., and Krushinskaya, N. L., 1969, Echolocating capabilities of the common dolphin (Delphinus delphis), Zoologicheskiy Zhurnal, 48:876 (English translation JPRS 48780).Google Scholar
  408. Bel’kovich, V. M., Borisov, V. I., Gurevich, V. S., Krushinskaya, N. L., and Dmitrieva, I. L., 1972, Echolocation discrimination of distance between the targets (angular resolution) by dolphins, in: “Proceedings of the 5th All-Union Conference on Marine Mammals”, Makhachkala, Part 2:30.Google Scholar
  409. Bel’kovich, V. M., Gurevich, V. S., Dmitrieva, I. L., Borisov, V. I., and Krushinskaya, N. L., 1973, Echolocation capabilities of the dolphins discriminating the geometrical figures by the square, in: “Material of the 6th All-Union Conference on Studying of Marine Mammals, Makhachkala”: 57.Google Scholar
  410. Berzin, A. A., 1971, “The Sperm Whale”. Pacific Scientific Research Institute of Fisheries and Oceanography (USSR), (Trans. by Israel Program for Scientific Translations, publ. by U. S. National Technical Information Service, Springfield, Va.).Google Scholar
  411. Blevins, C. E., and Parkins, B., 1973, Functional anatomy of the porpoise larynx, Amer. J. Anat., 138:151.PubMedCrossRefGoogle Scholar
  412. Blomberg, J., 1972, Pilot whale head oil: lipid analysis and ultrasonic studies, in: “Program of the XIth Congr. Int. Soc. for Fat Res.”, Goteborg, Abstract 223.Google Scholar
  413. Bloome, K. A., 1969, An electron microscopic study of the organ of corti of the porpoise (Abstract), Am. Zool., 9:1148.Google Scholar
  414. Bogoslovskaya, L. S., 1974, Distinctions of neuronal structure of primary acoustic centers in the dolphins, in: “Morfologiya Fiziologiya i Akustika Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatel’stvo Nauka, Moscow.Google Scholar
  415. Bogoslovskaya, L. S., 1975, Ultrastructure of the spiral ganglion and acoustic nerve in bottlenose dolphins (Tursiops truncatus), in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatl’stvo Naukova Dumka, Kiev.Google Scholar
  416. Bourcart, 1970, Le dauphin, Rev. des Corps de Sante, 11:311.Google Scholar
  417. Bounton, K. L., 1966, The remarkable dolphin (ear, sonar, echos), III: Sound senders and receivers, Can. Audubon., 28:24.Google Scholar
  418. Brown, A. M. and Pye, J. D., 1975, Auditory sensitivity at high frequencies in mammals, in: “Advances in Comparative Physiology and Biochemistry, Vol. 6”, O. Lowenstein, ed., Academic Press, New York.Google Scholar
  419. Bullock, T. H. and Gurevich, V. S., 1979, Soviet Literature on the nervous system and psychobiology of cetaceans, International Review of Neurobiology, (In Press).Google Scholar
  420. Bullock, T. H. and Ridgway, S. H., 1972, Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds, J. Neurobiol., 3:79.PubMedCrossRefGoogle Scholar
  421. Bullock, T. H. and Ridgway, S. H., 1972, Neurophysiological findings relevant to echolocation in marine mammals, in: “Animal Orientation and Navigation, S. R. Galles, K. Schmidt-Konig, G. J. Jacobs, and R. E. Belleville, eds., NASA, Washington, D. C.Google Scholar
  422. Bullock, T. H., Ridgway, S. H., and Suga, N., 1971, Acoustically evoked potentials in midbrain auditory structures in sea lions (Pinnipedia), Z. vergl. Physiol., 74:732.CrossRefGoogle Scholar
  423. Bullock, T. H., Grinnell, A. D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanagisawa, K., 1968, Electrophysiological studies of central auditory mechanisms in cetaceans, Zeitschrift fur vergleichende Physiologie, 59:117.Google Scholar
  424. Burdin, V. I., Reznik, A. M., Skornyakov, V. M. and Chupakov, A. G. 1974, Study of communicative signals in Black Sea dolphins, Akusticheskiy Zhurnal, 20(4):518.Google Scholar
  425. Burdin, V. I., Reznik, A. M., Skornyakov, V. M. and Chupakov, A. G., 1975, Communication signals of the black sea bottlenose dolphin, Sov. Phys. Acoust., 20:314.Google Scholar
  426. Burdin, V. I., Markov, V. I., Reznik, A. M., Skornyakov, V. M. and Chupakov, A. G., 1971, Ability of Tursiops truncatus (Ponticus barabash) to distinguish a useful signal against a noise background, in: “Morfologiya i Ekologiya Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatl’stvo Nauka, Moscow.Google Scholar
  427. Burdin, V. I., Markov, V. I., Reznik, A. M., Skornyakov, V. M., and Chupakov, A. G., 1971, Determination of the just noticeable intensity difference for white noise in the Black Sea dolphin, in; “Morfologiya i Ekologiya Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatl’stvo Nauka Moscow.Google Scholar
  428. Burdin, V. I., Markov, V. I., Reznik, A. M., Skornyakov, V. M., and Chupakov, A. G., 1971, Determination of the just noticeable intensity difference for white noise in the bottlenose dolphin (Tursiops truncatus Barabash), in: “Morphology and Ecology of Marine Mammals”, K. K. Chapskii and V. Y. Sokolov, eds., Wiley, New York.Google Scholar
  429. Busnel, R.-G., 1966, Information in the human whistled language and sea mammal whistling, in: “Whales, Dolphins and Porpoises”, K. S. Norris, ed., Univ. Calif. Press, Berkeley.Google Scholar
  430. Busnel, R.-G., 1970, Themes de reflexions a propos de l’echolocation biologique et de la bionique, in: “Principles and Practice of Bionics”, H. E. Von Gierke, W. D. Keidel, H. L. Oestreicher, eds., Technivision Serv., Slough — G. B.Google Scholar
  431. Busnel, R.-G., 1973, Symbiotic relationship between man and dolphins Trans. N. Y. Acad. Sci., Series II, 25:112.CrossRefGoogle Scholar
  432. Busnel, R.-G., and Dziedzic, A., 1966, Acoustic physiologique — caracteristiques physiques de certains signaux acoustiques due Delphinide Steno bredansis LESSON, C. R. Acad. Sci., 262:143.Google Scholar
  433. Busnel, R.-G., Dziedzic, A., 1966, Acoustic signals of the pilot whale Glogicephala melaena and the porpoises Delphinus delphis and Phocoena phocoena, in: “Whales, Dolphins and Porpoises”, K. S. Norris, ed., Ü. of Calif. Press, Berkeley.Google Scholar
  434. Busnel, R.-G. and Dziedzic, A., 1967, Observations sur le comportement et les emissions acoustiques du cachalot lors de la chasse, Bocagiana, Mus. Municipal do Funchal, Madeira, 14:1.Google Scholar
  435. Busnel, R.-G. and Dziedzic, A., 1967, Resultats metrologigues experimentaux de l’echolocation chez le Phocaena phocaena at leur comparison avec ceux de certaines chauves — souris, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  436. Busnel, R.-G. and Dziedzic, A., 1968, Caracteristiques physiques des signaux acoustiques de Pseudorca crassidens OWEN (Cetace odontocete), Extr. d. Mammal, 32:1.CrossRefGoogle Scholar
  437. Busnel, R.-G., and Dziedzic, A., 1968, Etude des signaux acoustiques associes a des situations de detresse chez certains cetaces odontocetes, Ann. de L’Inst. Oceanographique, Nouvelle Serie, 46:109.Google Scholar
  438. Busnel, R.-G., Dziedzic, A., and Alcuri, A., 1974, Etudes preliminaires de signaux acoustiques du Pontoporia blainvillei CERVAIS et d’ ORGIBNY (Cetacea, Platanistidae), Mammalia, 38:449.CrossRefGoogle Scholar
  439. Busnel, R.-G, Dziedzic, A., and Escudie, B., 1969, Autocorrelation et analyse spectrale des signauz “sonar” de deux especes Cetaces Odontocetes utilisant les basses frequences, C. R. Acad. Sci. Paris, 269:365.Google Scholar
  440. Busnel, R.-G., Pilleri, G., and Fraser, F. C., 1968, Notes concerant le dauphin Stenella styx Gray 1846, Extrait de Mammalia, 32:192.Google Scholar
  441. Busnel, R.-G., Escudie, B., Dziedzic, A. and Hellion, A., 1971, Structure des clics doubles d’echolocation du Globicephale (Cetace Odontocete), C. R. Acad. Sci., Serie D, 272:2459.Google Scholar
  442. Caine, N. G., 1976, “Time Separation Pitch and the Dolphin’s Sonar Discrimination of Distance”, Master’s thesis San Diego State University.Google Scholar
  443. Caldwell, D. K., and Caldwell, M. C., 1966, Observation on the distribution, coloration, behavior and audible sound production of the spotted dolphin, Stenella plagiodon COPE, Los Angeles County Mus., Contrib. in Sci., 104:1.Google Scholar
  444. Caldwell, D. K., and Caldwell, M. C., 1970, Echolocation-type signals by two dolphins genus Sotalia, Quart. J. Fla. Acad. Sci., 33:124.Google Scholar
  445. Caldwell, D. K., and Caldwell, M. C., 1971, Sounds produced by two rare cetaceans stranded in Florida, Cetology, 4:1.Google Scholar
  446. Caldwell, D. K., and Caldwell, M. C., 1971, Underwater pulsed sounds produced by captive spotted dolphins, Stenella plagiodon, Cetology, 1:1.Google Scholar
  447. Caldwell, D. K., and Caldwell, M.C., 1972, Senses and communication, in: “Mammals of the Sea, Biology and Medicine”, S. H. Ridgway, ed., C. C. Thomas, Springfield, Ill.Google Scholar
  448. Caldwell, M.C., and Caldwell, D. K., 1967, Intraspecific transfer of information via pulsed sound in captive Odontocete Cetaceans, in: “Animal Sonar Systems: Biology and Bionics”, R.-G. Busnel, ed., Lab de Physiol. Acoust. Jouy-en-Josas, France.Google Scholar
  449. Caldwell, M. C. & Caldwell, D. K., 1968, Vocalization of naive captive dophins in small groups, Science, 159:1121.PubMedCrossRefGoogle Scholar
  450. Caldwell, M. C., and Caldwell, D. K., 1969, Simultaneous but different narrow-band sound emissions by a captive Eastern Pacific pilot whale, Globicephala scammoni, Mammalia, 33:505.Google Scholar
  451. Caldwell, M. C., and Caldwell, D. K., 1970, Echolocation-type signals by dolphins genus Inia, Sea Frontiers, 15:343.Google Scholar
  452. Caldwell, M. C., and Caldwell, D. K., 1970, Etiology of the chirp sounds emitted by the atlantic bottlenosed dolphins: a controversial issue, Underwater Naturalist, 6:6.Google Scholar
  453. Caldwell, M. C., and Caldwell, D. K., 1970, Further studies on audible vocalizations of the Amazon freshwater dolphin, Inia geoffrensis, Contrib. in Sci., 187:1.Google Scholar
  454. Caldwell, M. C., and Caldwell, D. K., 1971, Statistical evidence for individual signature whistles in Pacific whitesided dolphins, Lagenorhynchus obliquidens, Cetology, 3:1.Google Scholar
  455. Caldwell, M. C., and Caldwell, D. K., 1972, Vocal mimicry in the whistle mode by an Atlantic bottlenosed dolphin, Cetology, 9:1.Google Scholar
  456. Caldwell, M. C., Caldwell, D. K., and Evans, W. E., 1966, Preliminary results of studies on the sounds and associated behavior of captive Amazon freshwater dolphins, Inia geoffrensis, in: “Proc. 3rd Annu. Conf. Biol. Sonar & Diving Mammals”, Stanford Res. Inst., Menlo Park, Calif.Google Scholar
  457. Caldwell, M. C., Caldwell, D. K., and Evans, W. E., 1966, Sounds and behavior of captive amazon freshwater dolphins, Inia geoffrensis, Contr. in Science, L. A. County Museum, 108:1.Google Scholar
  458. Caldwell, M. C., Caldwell, D. K., and Hall, N. R., 1969, An experimental demonstration of the ability of an Atlantic bottlenosed dolphin to discriminate between whistles of other individuals of the same species, Los Angeles County Mus. Nat. Hist. Found., 6:35.Google Scholar
  459. Caldwell, M. C., Caldwell, D. K., and Hall, N. R., 1970, An experimental demonstration of the ability of an Atlantic bottlenosed dolphin to discriminate between playbacks of recorded whistles of conspecifics, in: “Proc. of the 7th Annu. Conf. on Biol. Sonar & Diving Mammals”, Menlo Park, Calif.Google Scholar
  460. Caldwell, D. K., Caldwell, M. C., and Miller, J. F., 1969, Three brief narrow-band sound emissions by a captive male Risso’s dolphin, Grampus griseus, Bull. S. Calif. Acad. Sci., 68:252.Google Scholar
  461. Caldwell, M. C., Caldwell, D. K. and Miller, J. F., 1970, Statistical evidence for individual signature whistles in the spotted dolphin, Stenella plagiodon, Los Angeles County Mus. Nat. Hist. Found., Tech Rept., 7:45Google Scholar
  462. Caldwell, M. C., Caldwell, D. K., and Miller, J. F., 1973, Statistical evidence for individual signature whistles in the spotted dolphin, Stenella plagiodon, Cetology, 16:1.Google Scholar
  463. Caldwell, D. K., Caldwell, M. C., and Rice, D. W., 1966, Behavior of the sperm whale, Physeter catodon L., in: “Whales Dolphins, and Porpoises”, K. S. Norris, ed., Univ. of California Press, Berkeley.Google Scholar
  464. Caldwell, M. C., Caldwell, D. K., and Turner, R. H., 1970, Statistical analysis of the signature whistle of an Atlantic bottlenose dolphin with correlations between vocal changes and level arousal, Los Angeles Co., Calif. Mus. Nat. Hist., 8:1.Google Scholar
  465. Caldwell, M. C., Hall, N. R., and Caldwell, D. K., 1971, Ability of an atlantic bottlenosed dolphin to discriminate between, and potentially identify to individual, the whistles of another species, the spotted dolphin, Cetology, 6:1.Google Scholar
  466. Caldwell, M. C., Hall, N. R., and Caldwell, D. K., 1971, Ability of an Atlantic bottlenosed dolphin to discriminate between, and respond differentially to whistles of eight conspecifics, in: “Proc. 8th Annu. Conf. Biol. Sonar & Diving Mammals”, Menlo Park, Calif.Google Scholar
  467. Caldwell, D. K., Prescott, J. H., and Caldwell, M. C., 1966, Production of pulsed sound by the pigmy sperm whale, Kogia breviceps, Bull, S. Calif, Acad. Sci., 65:245.Google Scholar
  468. Caldwell, M. C., Hall, N. R., Caldwell, D. K., and Hall, H. I., 1971, A preliminary investigation of the ability of an Atlantic bottlenosed dolphin to localize underwater sound sources, Marineland Res. Lab., Techn. Rept. 6. Google Scholar
  469. Chapman, S., 1968, Dolphins and multifrequency, multiangular images, Science, 160:208.PubMedCrossRefGoogle Scholar
  470. Cherbit, G., and Alcuri, G., 1978, Etude de la propogation des vibrations a travers le rostre de Sotelia teuzii (cetacea) par inferometric holographique, C. R. Acad. Sci. Paris, 286:607.Google Scholar
  471. Corcella, A. T., and Green, M., 1968, Investigation of impulsive deep-sea noise resembling sounds produced by a whale, Jour. Acoust. Soc. Amer., 44:483.CrossRefGoogle Scholar
  472. Cummings, W. C., and Philippi, L. A., 1970, Whale phonations in repetitive stanzas, NUC Techn. Publ. 196, San Diego, Calif. Google Scholar
  473. Cummings, W. C., and Thompson, P. , 1968, Self-noise of a deep submersible in a bioacoustic investigation off Catalina Island, California, Jour. Acoust. Soc. Amer., 44:1742.CrossRefGoogle Scholar
  474. Cummings, W. C. and Thompson, P. , 1971, Gray whales, Eschrichtus robustus, avoid the underwater sounds of killer whales, Orcinus orca, Fishery Bull., 69:525.Google Scholar
  475. Cummings, W. C., and Thompson, P. O., 1971, Underwater sounds from the blue whale, Balaenoptera musculus, Jour. Acoust. Soc. Amer., 50:1193.CrossRefGoogle Scholar
  476. Cummings, W. C. and Thompson, P. 0., 1971, Bioacoustics of marine mammals, R. V. Hero Cruise 70–3, Antarctic J. U. S., 6:158.Google Scholar
  477. Cummings, W. C., Fish, J. F., and Thompson, P. O., 1972, Sound production and other behavior of southern right whale, Eubalena glacialis, Transact, of the San Diego Soc. Natur. Hist., 17:1.Google Scholar
  478. Cummings, W. C., Thompson, P. O., and Cook, R., 1967, Sound production of migrating gray whales, Eschrichtius gibbosus ERXLEBEN, 74th Meeting of the Acoustical Soc. of America.Google Scholar
  479. Cummings, W. C., Thompson, P. O., and Cook, R., 1968, Underwater sounds of migrating gray whales, Eschrichtius glaucus COPE, Jour. Acoust. Soc. Amer., 44:1278.CrossRefGoogle Scholar
  480. Cummings, W. C., Fish, J. F., Thompson, P. O., and Jehl, J. R., 1971, Bioacoustics of marine mammals off Argentina, R. V. Hero Cruise 71–3, Antarct. J. U. S., 6:266.Google Scholar
  481. Dailly, M., 1971, The primary cochlear nuclei in the Amazon dolphin Inia geoffrensis, in: “Investigations on Cetacea: Vol. III”, G. Pilleri, ed., Bentelli, Berne.Google Scholar
  482. Dailly, M., 1972, Contribution to the study of the cochlear apparatus in dolphins, in: “Investigations on Cetacea, Vol. II”, G. Pilleri, ed., Bentelli, Berne.Google Scholar
  483. Defran, R. H., and Caine, N. G., 1976, Periodicity pitch difference limens in the bottlenose dolphin (Tursiops truncatus), Jour, Acoust. Soc. Amer., 60: (Supplement 1) S5 (Abstract).CrossRefGoogle Scholar
  484. Diercks, K. J., 1972, Biological sonar systems: a bionics survey, Applied Research Laboratories, ARL-TR-72–34, Austin, Texas.Google Scholar
  485. Diercks, K. J., 1974, A collection of translations of foreign language papers on the subject of biological sonar systems, Applied Res. Lab. ARL-TR-74–9, Austin, Texas.Google Scholar
  486. Diercks, K. J., and Evans, W. E., 1975, Delphinid sonar: pulse wave and simulation studies, NUC Techn. Publ. 175, San Diego. Google Scholar
  487. Diercks, K. J., and Hickling, R., 1967, Echoes from hollow aluminum spheres in water, Jour. Acoust. Soc. Amer., 41:380.CrossRefGoogle Scholar
  488. Diercks, K. J., and Trochta, R. T., 1972, Animal sonar: measurements and meaning, Jour. Acoust. Soc. Amer, 51:133.CrossRefGoogle Scholar
  489. Diercks, K. J., Trochta, R. T., and Evans, W. E., 1973, Delphinid sonar: measurement and analysis, Jour. Acoust. Soc. Amer., 54:200.CrossRefGoogle Scholar
  490. Diercks, K. J., Trochta, R. T., Greenlaw, R. L. and Evans, W. E., 1971, Recording and analysis of dolphin echolocation signals, Jour. Acoust. Soc. Amer., 49:1729.CrossRefGoogle Scholar
  491. Dmitrieva, I. L., Krushinskaya, N. L., Bel’kovich, V. M., and Shurkhal, A. V., 1972, Echolocational discrimination of the shape of different subjects by dolphins, in: “Proc. of the Abstracts of the 5th All-Union Conference on Marine Mammals”, Makhachkala, Part 2:76.Google Scholar
  492. Dormer, K. J., 1974, The mechanism of sound production and measurement of sound processing in delphinid cetaceans, Ph.d. dissertation, University of California, Los Angeles.Google Scholar
  493. Dormer, K. J., 1979, Mechanisms of sound production and air recylcing in delphinids: Cineradiographic evidence, Jour. Acoust. Soc. Amer., 65:229.CrossRefGoogle Scholar
  494. Dral, A. D. G., 1972, Aquatic and aerial vision in the bottlenosed dolphin Neth. J. Sea Res, 5:510.CrossRefGoogle Scholar
  495. Dreher, J. J., 1966, Cetacean communication: small-group experiment, in: “Whales, Dolphins, and Porpoises”, K. S. Norris, ed., Univ. Calif. Press, Berkeley.Google Scholar
  496. Dreher, J. J., 1967, Bistatic target signatures and their acoustic recognition: a suggested animal model, in: “Marine Bio Acoustics”, W. N. Tavolga, ed., Pergamon Press, N. Y.Google Scholar
  497. Dreher, J. J., 1969, Acoustic holographic model of cetacean echolocation, in: “Acoustical Holography, Vol. I”, A. E. Metherell, ed., Plenum Press, New York.Google Scholar
  498. Dubrovskiy, N. A., 1972, Discrimination of objects by dolphins using echolocation, “Report of the 5th All-Union Conference on Studies of Marine Mammals, Part 2, Makhachkala”, as cited in: Ayrapet’yants, E. Sh. and Konstantinov, A. I., 1974, “Echolocation in Nature”, Nauka, Leningrad (English translation JPRS 63328–2).Google Scholar
  499. Dubrovskiy, N. A., and Krasnov, P. S., 1971, Discrimination of elastic spheres according to material and size by the bottlenose dolphin, Trudy Akusticheskogo Institute, 17, as cited in; Bel’kovich, V. M., and Dubrovskiy, N. A., 1976, “Sensory Bases of Cetacean Orientation”, Nauka, Leningrad (English translation JPRS L/7157).Google Scholar
  500. Dubrovskiy, N. A., and Titov, A. A., 1975, Echolocation discrimination by bottlenose dolphins (Tursiops truncatus) of spherical targets which differ simultaneously in dimensions and matetials, Akusticheskiy Zhurnal, 21(3):469.Google Scholar
  501. Dubrovskiy, N. A., and Zaslavsky, G. L., Dolphin echolocation Akusticheskiy Zhurnal, 3 (English Translation JPRS 65777).Google Scholar
  502. Dubrovskiy, N. A., and Zaslavsky, G. L., 1973, Temporal structure and directivity of sound emission by the bottlenosed dolphin, in: “Proceedings of the 8th All-Union Acoustical Conference”.Google Scholar
  503. Dubrovskiy, N. A., and Zaslavski, G. L., 1975, Role of the skull bones in the space-time development of the dolphin echolocation signal, Sov. Phys. Acoust., 21:409 (Translation: American Institute of Physics).Google Scholar
  504. Dubrovskiy, N. A., Krasnov, P. S., and Titov, A. A., 1970, On the emission of echo-location signals by the Azov Sea harbor porpoise, Soviet Physics-Acoustics, 16:444.Google Scholar
  505. Dubrovskiy, N. A., Krasnov, P. S. and Titov, A. A., 1970, On the question of the emission of ultrasonic ranging signals by the common porpoise, Akusticheskiy Zhurnal, 16:521 (English translation JPRS 52291).Google Scholar
  506. Dubrovskiy, N. A., Krasnov, P. S., and Titov, A. A., 1971, Discrimination of solid elastic spheres by an echolocating porpoise, Tursiops truncatus, in: “Proc. 7th International Acoust.”, Budapest, 25(3):533.Google Scholar
  507. Dubrovskiy, N. A., Titov, A. A., Krasnov, P. S., Babkin, V. P., Lekomtsev, V. M., and Nikolenko, G. V., 1970, Investigation of the emission capacity of the Black Sea Tursiops truncatus echolocation apparatus, Trudy Akusticheskogo Instituta, 10:163.Google Scholar
  508. Dudok van Heel, W. H., 1966, Navigation in Cetacea, in: “Whales Dolphins and Porpoises”, K. S. Norris, ed., U. of Calif. Press, Berkeley.Google Scholar
  509. Dunn, J. L., 1969, Airborn measurements of the acoustic characteristics of a sperm whale, Jour. Acoust. Soc. Amer., 46:1052.CrossRefGoogle Scholar
  510. Dziedzic, A., 1968, Quelques performances des systemes de detection par echos des chauves souris et des delphinidae, Rev. Acoust., 1:23.Google Scholar
  511. Dziedzic, A., 1971, Performances dans la detection de cibles par echolocation par le Marsouin Phocoena phocoena et etude analytique des signaux mis en oeuvre dans ce processus, These, Ecole Pratique des Hautes Etudes.Google Scholar
  512. Dziedzic, A., 1971, Theorie et applications de l’acoustique sousmarine Ecole Super, des Techn. avancees, 16:1.Google Scholar
  513. Dziedzic, A., 1972, Les sonars biologiques, La Recherche, 3:315.Google Scholar
  514. Dziedzic, A., and Alcuri, G., 1977, Acoustic recognition of forms and characteristics of the sonar signals of Tursiops truncatus, C. R. Acad. Sci. Paris, 285:981.Google Scholar
  515. Dziedzic, A., and Levy, J. C., 1973, Description et mise en oeuvre d’une base de triangulation destinee a l’etude en mer des signaux de Dauphins, 4°Coll. Traitement du signal et ses applications, Nice, 4:585.Google Scholar
  516. Dziedzic, A., Escudie, B., and Hellion, A., 1975, Realistic methods for analysis of biological sonar signals, Ann. Telecomm., 30:270.Google Scholar
  517. Dziedzic, A., Jeanny, M., and Levy, J. C., 1975, Resultats d’une etude sur les caracteristiques spatio-temporelles et spectrales des signaux acoustiques emis par un dauphin l’approche sonar d’une cible, in: “Colloque Nat. Sur le Traitement du Signal et ses Applications”, Nice.Google Scholar
  518. Dziedzic, A., Chiollaz, M., Escudie, B., and Hellion, A., 1977, Some properties of low frequency sonar signals of the dolphin Phoecena phoecena, Acustica, 37:258.Google Scholar
  519. Dziedzic, A., Escudie, B., Guillard, P., and Hellion, A., 1974, Evidence of tolerance to the effect of Doppler in the sonar emissions of Delphinus delphis, C. R. Acad. Sci. Paris, 279:1313.Google Scholar
  520. Dziedzic, A., Escudie, B., Hellion, A., and Vial, C., 1969, Resultats preliminaires d’une etude de certains sonars biologiques — Analyse spectrale de signauz de 7 especes de Cetaces odontocetes, 2°Coll. traitement du signal et ses applications, Nice, 2:785.Google Scholar
  521. Eberhardt, R. L. and Evans, W. E., 1962, Sound activity of the California gray whale, Eschrichtius glaucus, Jour. Aud. Eng. Soc., 10:324.Google Scholar
  522. Erulkar, S. D., 1972, Comparative aspects of spatial localization of sound, Physiological Reviews, 52:237.PubMedGoogle Scholar
  523. Escudie, B., 1972, Etat actuel des travaux sur les “sonars biologiques”, Comparaison des proprietes de ces systemes avec les artificiels, Perspectives, I. C. P. de Lyon, 2:27.Google Scholar
  524. Escudie, B., Hellion, A., Dziedzic, A., 1971, Results from studies of air and marine sonars through signal processing and spectral analysis, in: “Proc. Troisieme Colloque sur le Traitement Signal et ses Applications”, 3:533.Google Scholar
  525. Evans, W. E., 1967, Discussion, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiology Acoustique, Jouy-en-Josas, France.Google Scholar
  526. Evans, W. E., 1967, Vocalizations among marine mammals, in: “Marine Bio-Acoustic II”, W. N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  527. Evans, W. E., 1969, Marine mammal communication: Social and ecological factors, in: “The Biology of Marine Mammals”, H. T. Andersen, ed., Academic Press, New York.Google Scholar
  528. Evans, W. E., 1973, Echolocation by marine delphinids and one species of fresh-water dolphin, Jour. Acoust. Soc. Amer., 54:191.CrossRefGoogle Scholar
  529. Evans, W. E. and Bastian, J., 1969, Marine mammal communication: social and ecological factors, in: “The Biology of Marine Mammals”, H. T. Anderson, ed., Academic Press, N. Y.Google Scholar
  530. Evans, W. E., and Herald, E. S., 1970, Underwater calls of a captive Amazon manatee, Trichechus inunguis, J. Mammal, 51:820.CrossRefGoogle Scholar
  531. Evans, W. E., and Maderson, P. F. A., 1973, Mechanisms of sound production in delphinid cetaceans: A review and some anatomical considerations, Amer. Zool., 13:1205.Google Scholar
  532. Evans, W. E., and Powell, B. A., 1967, Discrimination of different metallic plates by an echolocating delphinid, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  533. Fadeyeva, L. M., 1973, Discrimination of spheres with various echosignal structure by dolphins, in: “Proceedings of the 8th All-Union Acoustical Conference”, 1:134.Google Scholar
  534. Fay, R. R., 1974, Auditory frequency discrimination in vertebrates, Jour. Acoust. Soc. Amer., 56:206.CrossRefGoogle Scholar
  535. Filimonoff, I. N., 1966, On the so-called rhinencephalon in the dolphin, J. Hirnforsch, 8:1.PubMedGoogle Scholar
  536. Fish, J. F., and Lingle, G. E., 1977, Responses of spotted porpoises (Stenella attenuata) to playback of distress (?) sounds of one of their kind, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  537. Fish, J. F., and Turl, C. W., 1976, “Acoustic source levels of four species of small whales”, NUC Techn. Publ. 547, San Diego.Google Scholar
  538. Fish, J. F., and Vania, J. S., 1971, Killer whale, Orcinus orca, sounds repel white whales, Delphinapterus leucas, Fishery Bull., 69:531.Google Scholar
  539. Fish, J. F., and Winn, H. E., Sounds of marine animals, in: “Encyclopedia of Marine Resources”, F. E. Firth, ed., Van Nostrand Reinhold Co.Google Scholar
  540. Fish, J. F., Johnson, C. S., and Ljungblad, D. K., 1976, Sonar target discrimination by instrumented human divers, Jour. Acoust Soc. Amer., 59:602.CrossRefGoogle Scholar
  541. Fish, J. F., Sumich, J. L. and Lingle, G. E., 1974, Sounds produced by the gray whale, Eschrichtius robustus, Mar. Fish Rev., 36:38.Google Scholar
  542. Fitzgerald, J. W., 1973, “A qualitative model of the dolphin sonar, Part II: The high-frequency echo-location apparatus”, Technical Report 117, Office of Naval Res., Acoustics Progr. Off., Arlington, Virginia.Google Scholar
  543. Flanigan, N. J., 1972, The central nervous system, in: “Mammals of the Sea: Biology and Medicine”, S. H. Ridgway, ed., C. C. Thomas, Springfield, Ill.Google Scholar
  544. Fleischer, G., 1973, On structure and function of the middle ear in the bottlenosed dolphin (Tursiops truncatus), in: “Proc. 9th Ann. Conf. Biol. Sonar and Diving Mammals”, Stanford Res. Inst. Press, Menlo Park, Calif.Google Scholar
  545. Fleischer, G., 1973, Structural analysis of the tympanicum complex in the bottle-nosed dolphin (Tursiops truncatus), Jour. Aud. Res., 13:178.Google Scholar
  546. Fleischer, G., 1975, Uber das spezialisierte Gehororgan von Kogia Breviceps (odontoceti), Z.f. Saugetierkunde Bd. 40, H.2, S:89.Google Scholar
  547. Fleischer, G., 1976, Hearing in extinct cetaceans as determined by cochlear structure, Journal of Paleontology, 50:133.Google Scholar
  548. Fleischer, G., 1976, On bony microstructures in the dolphin cochlea, related to hearing, N. Jb. Geol. Palaont., 151:166.Google Scholar
  549. Fleischer, G., 1976, Uber Beziehungen Zwischen Hovermogen und Schadelbau bie Walen, Saugetierkundliehe Mitteilungen: 48.Google Scholar
  550. Fleischer, G., 1976, Uber Die Verankerung des Stapes im Ohr der Cetacea und Sirenia, Z.f. Saugetierkunde Bd. 41, H.5, S:304.Google Scholar
  551. Fleischer, G., 1978, Evolutionary principles of the mammalian middle ear, in: “Advances in Anatomy, Embryology and Cell Biology; Springer Verlag, Berlin.Google Scholar
  552. Ford, J. K. B., and Fischer, H. D., 1978, Underwater acoustic signals of the narwhal (Monodon monoceros), Can. J. Zool., 56:552.CrossRefGoogle Scholar
  553. Fraser, F. C., 1973, Record of a dolphin (Sousa teuszii) from the coast of Mauritania, Transact. N. Y. Acad. Sci., 35:132.CrossRefGoogle Scholar
  554. Gales, R. S., 1966, Pickup analysis and interpretation of underwater acoustic data, in: “Whales, Dolphins and Porpoises”, K. S. Norris, ed., U. of Calif. Press, Berkeley.Google Scholar
  555. Gallien, C. L., Chalumeau-le-Foulgoc, M. T., and Fine, J. M., 1967, Les proteines serigues de Delphinus delphis Linne (Cetace Odontocete) C. R. Acad. Sci. Paris, 264:1359.Google Scholar
  556. Gallien, C. L., Chalumeau-le-Foulgoc, M. T., and Fine, J. M., 1970, Comparative study of serum proteins in four dolphin species, Comp. Biochem. Physiol., 37:375.PubMedCrossRefGoogle Scholar
  557. Gapich, L. I. and Supin, Y. A., 1974, The activity of single neurons of the acoustical region of the cerebral cortex of the porpoise Phocoena phocoena, J. Evol. Biochem. Physiol., 10:182.Google Scholar
  558. Gentry, R. L., 1967, Underwater auditory localization in the California sea lion (Zalophus californianus), Jour. Aud. Res., 7:187.Google Scholar
  559. Giraud-Sauveur, D., 1969, Biophysical research on the ossicles of cetaceans, Extrait de Mammalia, 33:285.Google Scholar
  560. Giraud-Sauveur, D., and Miloche, M., 1968, Sur la structure particuliere des os de l’oreille moyenne des cetaces odontocetes, J. Microscop., 7:1098.Google Scholar
  561. Giro, L. R. and Dubrovskiy, N. A., 1972, Correlation between recurrence frequency of delphinid echolocation signals and difficulty of echoranging problem, in: “Marine Instrument Building Series, 2:84, as cited in: Vel’min V. A., 1975, Target detection by the bottlenose dolphin under artificial reverberation conditions, in: “Marine Mammals, Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals”, G. B. Agarkov, ed., Nauka Dumka, Kiev (English translation JPRS L/6049).Google Scholar
  562. Giro, L. R. and Dubrovskiy, N. A., 1973, On the origin of low-frequency component of the echoranging pulsed signal of dolphins in: “VHI-aya Vsesoyuznaya Akusticheskaya Konferentsiya”, (Eighth All-Union Acoustical Conference) Moscow.Google Scholar
  563. Giro, L. R., and Dubrovskiy, N. A., 1974, The possible role of supracranial air sacs in the formation of echo-ranging signals in dolphins, Akusticheskiy Zhurnal, 20(5):706.Google Scholar
  564. Golubkov, A. G., and Ivanenko, Yu. V., 1970, Study of the range resolution ability of the dolphin’s echolocator, in: “Proc. of the 23rd Scientific-Technical Conference of LIAP”,Google Scholar
  565. Golubkov, A. G., Ershova, I. V., Korolev, I. V. and Malyshev, Yu. A., 1972, On energetical parameters of the Black Sea bottlenosed dolphin echolocational apparatus, Trudy LIAP 76:9.Google Scholar
  566. Golubkov, A. G., Korolev, V. I., Antonov, V. A., and Ignat’eva, E. A. 1975, Comparison of dolphin echolocation signals with results of optimal signal calculations, Doklady Akad. Nauk SSSR 223:1251.Google Scholar
  567. Golubkov, A. G., Zworykhin, V. N., Ershova, I. V., Korolev, V. I., Burdin, V. I., and Malyshev, Ju. A., 1969, Some experimental data and prospects for investigation of the analyzing capacity in dolphins, Trudij Leningr. Inst. Aviats., 64:128.Google Scholar
  568. Gracheva, M. S., 1971, A contribution to the structure of Larynx in Tursiops truncatus, Rev, de Zool., Moscow, 50:1539.Google Scholar
  569. Grinnel, A. D., 1967, Mechanisms of overcoming interference in echolocating animals, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  570. Gruenberger, H. B., 1970, On the cerebral anatomy of the Amazon dolphin, Inia geoffrensis, in: “Investigations on Cetacea V. II”, G. Pilleri, Bentelli AG., Berne.Google Scholar
  571. Gurevich, V. S., 1968, Experience of study of dolphin’s capabilities (Delphinus delphis) for echolocation discrimination of geometrical figures, (Theses of report), “Scientific Conference of Moscow State Lomonosov University, Moscow.Google Scholar
  572. Gurevich, V. S., 1969, Echolocation discrimination of geometric figures in the dolphin, Delphinus delphis, Moscow, Vestnik Moskovskoga Universiteta, Biologiya, Pochovedeniye, 3:109 (English Translation JPRS 49281).Google Scholar
  573. Gurevich, V. S., 1972, Morpho-functional studying of the upper skull respiratory tracts of the Common dolphin (Delphinus delphis), in; “Conference on using Mathematical Methods and Computing in Mathematics and Bionics”, Leningrad.Google Scholar
  574. Gurevich, V. S., 1973, Experience of the plastical reconstruction of the upper skull respiratory tract of the Common dolphin (Pelphinus delphis), Journal Ontogenez; 78.Google Scholar
  575. Gurevich, V. S., 1973, Histological study of the sound production organs in the Lagenorhynchus obliquidens, in: “Proceedings of the Eighth All-Union Acoustical Conference”, Leningrad.Google Scholar
  576. Gurevich, V. S., 1973, Possibilities of interaction of the larynx and upper skull respiratory tracts in the process of sound production in the dolphins, in: “Material of the Fourth All-Union Conference on Marine Mammals”, Makhachkala: 23–25.Google Scholar
  577. Gurevich, V. S., and Evans, W. E., 1976, Echolocation discrimination of complex planar targets by the Beluga whale (Delphinapterus leucas), Jour. Acoust. Soc. Amer., 60(1):5.CrossRefGoogle Scholar
  578. Gurevich, V. S., and Evdokimov, V. N., 1973, Rentgenological investigation of the lungs and respiratory tracts of the Common dolphin (Pelphinus delphis), in: “Materials of the Fourth All-Union Conference Marine Mammals”, Makhachkala, 6:14.Google Scholar
  579. Gurevich, V. S., and Korol’kov, Yu. I., 1973, A rentgenological study of respirative act in Pelphinus delphis, Zool. Jour., 52(5):786.Google Scholar
  580. Hall, J. G., 1967, Hearing and primary auditory centers of the whales, Acta Otolaryngol., Suppl., 224:244.CrossRefGoogle Scholar
  581. Hall, J. P., and Johnson, C. S. 1972, Auditory thresholds of a killer whale Orcinus orca (Linnaeus), Jour. Acoust. Soc. Amer., 51:515.CrossRefGoogle Scholar
  582. Hammer, C. E., 1977, Biosonar report: An experimental analysis of salient target characteristics for the echo-locating porpoise (Tursiops truncatus) (Technical Report 7709–1), SEACO, Incorporated, Kailua, Hawaii.Google Scholar
  583. Hammer, C. E., 1978, Echo-recognition in the porpoise (Tursiops truncatus): An experimental analysis of salient target characteristics, Naval Ocean Systems Center, San Piego, Tech. Rep. 192.Google Scholar
  584. Hammer, C., and Au, W. W. L., 1978, Target recognition via echolocation by an Atlantic bottlenose porpoise (Tursiops truncatus), Jour. Acoust. Soc. Amer., 64(1):587.CrossRefGoogle Scholar
  585. Hansen, I. A., and Cheah, C. C., 1969, Related dietary and tissue lipids of the sperm whale, Comp. Biochem. Physiol., 31:757.PubMedCrossRefGoogle Scholar
  586. Hellion, A., Guillard, P., Escudie, B., and Pziedzic, A., 1974, Etude des signaux impulsifs utilises par les sonars biologiques, Coll. s. les methodes d’etudes et simulation des chocs, Lyon.Google Scholar
  587. Herman, L. M., 1975, Interference and auditory short-term memory in the bottlenosed dolphin, Animal Learning & Behavior, 3:43.CrossRefGoogle Scholar
  588. Herman, L. M., and Arbeit, W. R., 1971, Auditory frequency discrimination from 1–36 kHz in Tursiops truncatus, in: “Proc. 8th Annu. Conf. on Biol. Sonar and Diving Mammals”, Stanford Res. Inst., Menlo Park, Calif.Google Scholar
  589. Herman, L. M. and Arbeit, W. R., 1972, Frequency difference limens in the bottlenose dolphin: 1–70 kHz, Jour. Aud. Res., 12:109.Google Scholar
  590. Herman, L. M., and Arbeit, W. R., 1973, Stimulus control and auditory discrimination learning sets in the bottlenose dolphin, J. exp, Analys. Behav., 19:379.CrossRefGoogle Scholar
  591. Herman, L. M., and Gordon, J. A., 1974, Auditory delayed matching in the bottlenose dolphin, J. Exp. Analys. Behav., 21:19.CrossRefGoogle Scholar
  592. Herman, L. M., Beach, F. A., Pepper, R. L., and Stalling, R. B., 1969, Learning-set formation in the bottlenose dolphin, Psychon. Sci., 14:98.Google Scholar
  593. Herman, L. M., Peacock, M. F., Yunker, M. P., and Madsen, C. J., 1975, Bottlenosed dolphin: Double split pupil yields equivalent aerial and underwater duirnal acuity, Science, 189:650.PubMedCrossRefGoogle Scholar
  594. Herald, E. S., Brownell, R. L., Frye, R. L., Morris, E. J., Evans, W. E., and Scott, A. B., 1969, Blind river dolphin: First side-swimming cetacean, Science, 166:1408.PubMedCrossRefGoogle Scholar
  595. Hollien, H., Hollien, P., Caldwell, D. K., and Caldwell, M. C., 1976, Sound production by the Atlantic bottlenosed dolphin, Tursiops truncatus, Cetology, 26:1.Google Scholar
  596. Ivanova, M. P., and Kurganskiy, N. A., 1973, A dolphin’s trajectory of motion in the process of discriminating spherical and cylindrical objects, IV-oe Vsesoyuznoye soveshchaniye po Bionike, Moscow, 2:106.Google Scholar
  597. Jacobs, D., 1972, Auditory frequency discrimination in the Atlantic bottlenose dolphin, Tursiops truncatus, Montague: A preliminary report, Jour. Acoust. Soc. Amer., 52:696.CrossRefGoogle Scholar
  598. Jacobs, D. W., and Hall, J. D., 1972, Auditory thresholds of a freshwater dolphin, Inia geoffrensis Blainville, Jour. Acoust. Soc. Amer., 51:530.CrossRefGoogle Scholar
  599. Jacobs, M., 1971, “Talking” through the nose. Sound and communication in whales and dolphins, Anim. Kingdom, 74:2.Google Scholar
  600. Jansen, J., and Jansen, J. K. S,. 1969, The nervous system of cetecea, in: “The Biology of Marine Mammals”, H. T. Anderson, ed., Acad. Press, New York.Google Scholar
  601. Jerison, H. J., 1973, “Evolution of the Brain and Intelligence”, Acad. Press, New York.Google Scholar
  602. Johnson, C. S., 1966, Auditory thresholds of the bottlenosed porpoise, Tursiops truncatus (Montague), N. O. T. S. TP 4178.Google Scholar
  603. Johnson, C. S., 1967, Discussion to paper by Evans and Powell, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  604. Johnson, C. S., 1967, Sound detection thresholds in marine mammals, in; “Marine Bio-Acoustics, Proc. of the Second Symposium on Marine Bio-Acoustics, New York”, W. N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  605. Johnson, C. S., 1968, Masked pure tone thresholds in the bottle-nosed porpoise, Jour. Acoust. Soc. Amer., 44:965.CrossRefGoogle Scholar
  606. Johnson, C. S., 1971, Auditory masking of one pure tone by another in the bottlenosed porpoise, Jour. Acoust. Soc. Amer., 49:1317.CrossRefGoogle Scholar
  607. Johnson, R. A., and Titlebaum, E. L., 1976, Energy spectrum analysis: A model of echolocation processing, Jour. Acoust. Soc. Amer. 60:484.CrossRefGoogle Scholar
  608. Kadnadzey, V. V., Kreychi, S. A., Kakhalkina, E. N., Nikolenko, G. V., and Titov, A. A., 1975, Morskiye Mlekopitayushchiye, in: “Sixth All-Union Conference on the Study of Marine Mammals”, G. B. Agarkov, ed., (English translation JPRS L6049–1).Google Scholar
  609. Kanazu, R., Morii, H., and Fukuhara, T., 1969, Studies on the little toothed whales in the west sea area of Kyushu — XVII, about higher branched chain fatty acids in head oil of the little toothed whales — I., Bull. Fac. Fish. Nagasaki Univ. 28:161.Google Scholar
  610. Karol, R., Litchfield, C., Caldwell, D. K., and Caldwell, M. C., 1978, Compositional topography of the melon and spermaceti organ lipids in the pygmy sperm whale Kogia breviceps: Implications for echolocation, Mar. Biol., 47:115.CrossRefGoogle Scholar
  611. Kasuya, T., 1973, Systematic consideration of recent toothed whales based on the morphology of tympano-periotic bone, Sci, Rept. Whales Res. Inst., 25:103.Google Scholar
  612. Kaufman, B. W., Siniff, D. B., and Reichle, R. A., 1972, Colony behavior of Weddell seals, Leptonychotes weddelli, at Hutton Cliffs, Antartica, in: “Symposium on the Biology of the Seal”, G. B. Farquhar, ed., Univ. of Guelph, Ontario.Google Scholar
  613. Kenshalo, D. R., 1967, Discussion, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  614. Kesarev, V. S., Trykova, O. V., and Malofeyeva, L. I., 1975, Structural prerequisites for corticalization of the dolphin’s acoustic analyzer, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  615. Khakhalina, E. N., 1975, Emotional signals in the dolphin’s communication system, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Isdatel’stvo Naukova Dumka, Kiev.Google Scholar
  616. Khomenko, B. G., 1969, Distinctions in structure of the peripheral nervous system of the dolphin’s melon (Tursiops truncatus Ponticus Barabash), in: “Tezisy II vsesoyuznogo simpoziuma mododykh uchenykh”, Sevastopol.Google Scholar
  617. Khomenko, B. G., 1970, Some distinctions of histological structure and innvervation of the rostrum of the Black Sea dolphins, Bionika, 4:70.Google Scholar
  618. Khomenko, B. G., 1970, The histostructure and innvervation of the sound apparatus -nasal sacs — in dolphins, Akad. Nauk. URSS, Dopovid, 32:83.Google Scholar
  619. Khomenko, B. G., 1973, A contribution to the morphology of I-VIII pairs of cranial nerves in dolphins, Zoologicheskiy Zhurnal, 52(3):407.Google Scholar
  620. Khomenko, B. G., 1973, Morphological basis for the echolocation properties of dolphins, Bionika, 7:60.Google Scholar
  621. Khomenko, B. G., 1974, A morphological and functional analysis of the structure of the supercranial respiratory passage as a possible echolocation signal generator in the dolphin, Bionika, 8 (English translation JPRS 63492).Google Scholar
  622. Khomenko, B. G., 1975, Comparative anatomical analysis of the structure and innervation of nasolabial region in certain mammals and man, Vestnik Zoologii, 5:39.Google Scholar
  623. Khomenko, B. G., 1975, Morphological characteristics of the respiratory and suckling reflexes in dolphin erabryogenesis, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  624. Khomenko, B. G., and Khadzhinskiy, V. G., 1974, Morphological and functional principles underlying cutaneous reception in dolphins, Bionika, 8:106.Google Scholar
  625. Kibblewhite, A. C., Denham, R. N., and Barnes, D. J., 1967, Unusual low-frequency signals observed in New Zealand waters, Jour. Acoust. Soc., Amer., 41:644.CrossRefGoogle Scholar
  626. Kinne, O., 1975, Orientation in space: Animals, marine, in: “Marine Ecology Vol. 2 — Physiological Mechanisms”, O. Kinne, ed., Wiley, London.Google Scholar
  627. Kiselev, V. I., and Mrochkov, K. A., 1975, Products of dissolution of cetacean connective tissue collagen and use thereof, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  628. Konstantinov, A. I., Mel’nikov, N. F., and Titov, A. V., 1968, On dolphin ability of identifying objects, in: “Tezisy Dokladov na II-oy Ukrainskoy Respubliknaskoy Konferentsii po Bionike”, Kiev.Google Scholar
  629. Korolev, L. D., Lipatov, N. V., and Resvov, R. N., Savel’ev, M.A., and Flenov, A. B., 1973, Investigation of the spatial directivity diagram of the dolphin sound emitter, in: “Proceedings of the 8th All-Union Acoustical Conference”, Leningrad.Google Scholar
  630. Koshovoy, V. V., and Mykhaylovs’kyy, V. M., 1972, The operating principle of the echolocating system of marine mammals, Dopovidi Akad. Nauk Ukrayins’kayi RSR Ser. A Fizyko-tekhn. ta maternat, Nauky, Ukranian 12:1097 (English translation JPRS 58344).Google Scholar
  631. Kozak, V. A., 1974, Receptor zone of the video-acoustic system of the sperm whale (physeter Catodon L., 1758), Fiziologichnyy Zhurnal Academiy Nauk Ukraynskoy RSR 120 (English translation: JPRS 65017).Google Scholar
  632. Kruger, Lawrence, 1966, Specialized features of the cetacean brain, in: “Whales, Dolphins, and Porpoises”, K. S. Norris, ed., Univ. of California Press, Berkeley.Google Scholar
  633. Krushinskii, L. V., Dashevskii, B. A., Krushinskaya, N. L., and Dmitrieva, I. L., 1972, A study of the ability of the dolphin Tursiops truncatus (Montague) to operate with the empirical dimensionality of geometric figures, Doklady Akademii Nauk SSR, 204:755 (Translation: Plenum Publishing Company, New York, 1972).Google Scholar
  634. Ladygina, T. F., and Supin, A. Ya., 1970, The acoustic projection in the dolphin cerebral cortex, Fiziol. Zh. SSSR im. I. M. Sechenova, 56:1554.PubMedGoogle Scholar
  635. Ladygina, T. F., and Supin, A. Ya., 1977, Localization of sensory projection zones in the cerebral cortex of the bottlenosed dolphin, Tursiops truncatus, Zumal Evolyutsionnoy Biokhimii i Fiziologii, 6:712.Google Scholar
  636. Leatherwood, J. S., Johnson, R. A., Ljungblad, D. K., and Evans, W. E., 1977, “Broadband measurements of underwater acoustic target strengths of panels of tuna nets”, NOSC TR 126, San Diego.Google Scholar
  637. Lekoratsev, V. M., and Titov, A. A., 1974, Procedures for studying the echolocation apparatus of dolphins, Bionika, 8:83 (English Translation JPRS 63492).Google Scholar
  638. Lende, R. A., and Walker, W. I., 1972, An unusual sensory area in the cerebral neocortex of the bottlenose dolphin, Tursiops truncatus, Brain Res., 45:555.PubMedCrossRefGoogle Scholar
  639. Levenson, C., 1974, Source level and bistatic target strength of the sperm whale (Physeter catodon) measured from an oceanographic aircraft, Jour. Acoust. Soc. Amer., 55:1100.CrossRefGoogle Scholar
  640. Lilly, J. C., 1966, Sonic-ultrasonic emissions of the bottlenose dolphin, in: “Whales, Dolphins, and Porpoises”, K. S. Norris, ed., Univ. Calif. Press, Berkeley.Google Scholar
  641. Lilly, J. C., 1967, Dolphin vocalization, in: “Brain Mechanisms Underlying Speech and Language”, Grune and Stratton, New York.Google Scholar
  642. Lilly, J. C., 1967, Dolphin’s vocal mimicry as a unique ability and a step toward understanding, in: “Research in Verbal Behavior and Some Neurophysiological Implications”, Academic Press, New York.Google Scholar
  643. Lilly, J. C., 1967, Mind of the dolphin: a nonhuman intelligence, Doubleday and Co., New York.Google Scholar
  644. Lilly, J. C., 1968, Sound production in Tursiops truncatus (bottlenose dolphin), Ann. N. Y. Acad. Sci., 155:320.CrossRefGoogle Scholar
  645. Lilly, J. C., Miller, A. M., and Truby, U. M., 1968, Reprogramming of the sonic output of the dolphin sonic burst count matching, Jour. Acous. Soc. Amer., 43:1412.CrossRefGoogle Scholar
  646. Lipatov, N. V., and Solntseva, G. N., 1974, Morphological and functional features of the external auditory canal of the common and bottlenose dolphin, Bionika, 8 (English translation JPRS 63492).Google Scholar
  647. Litchfield, C., and Greenberg, A. J., 1974, Comparative lipid patterns in the melon fats of dolphins, porpoises, and toothed whales, Comp. Biochem. Physiol., 478:401.Google Scholar
  648. Litchfield, C., Karol, R., and Greenberg, A. J., 1973, Compositional topography of melon lipids in the Atlantic bottlenose dolphin Tursiops truncatus: implications for echolocation Mar. Biol., 23:165.CrossRefGoogle Scholar
  649. Litchfield, C., Ackman, R. G., Sipos, J. C. and Eaton, C. A., 1971, Isovaleroyl triglycerides from the blubber and melon oils of the beluga whale (Delphinapterus leucas), Lipids, 6:674.PubMedCrossRefGoogle Scholar
  650. Litchfield, C., Kinneman, J., Ackman, R. G., and Eaton, C. A., 1971, Comparative lipid patterns in two freshwater dolphins Inia geoffrensis and Sotalia fluviatilis, Jour. Amer. Oil Chem. Soc., 48:91.Google Scholar
  651. Litchfield, C., Greenberg, A. J., Caldwell, D. K., Caldwell, M. C., Sipos, J. C., and Ackman, R. G., 1975, Comparative lipid patterns in acoustical and nonacoustical fatty tissues of dolphins, porpoises, and toothed whales, Comp. Biochem. Physiol., 508:591.Google Scholar
  652. Livshits, M. S., 1974, Some properties of dolphin hydrolocator from the viewpoint of correlation hypothesis, Biofizika, 19:916 (English translation JPRS 64329).Google Scholar
  653. Livshits, M. S., 1975, Correlation model for the recognition of objects by echolocating animals, Biofizika, 20(5):920 (English translation JPRS L/5744).PubMedGoogle Scholar
  654. Ljungblad, D. K., Leatherwood, S., and Johnson, R. A., 1977, Echolocation signals of wild Pacific bottlenosed dolphins Tursiops Sp, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  655. Lockyer, C., 1977, Observations on diving behaviour of the sperm whale Physeter catodon, in: “A Voyage of Discovery”, M. Angel, ed., Pergamon Press, Oxford.Google Scholar
  656. Love, R. H., 1971, Measurements of fish target strength: a review, Fish. Bull., 69:703.Google Scholar
  657. Love, R. H., 1973, Target strengths of humpback whales, Megaptera novaeangliae, Jour. Acous. Soc. Amer., 54:1312.CrossRefGoogle Scholar
  658. Mackay, R. S., 1966, Telemetering physiological information from within cetaceans, and the applicability of ultrasound to understanding in vivo structure and performance, in: “Whales, Dolphins and Porpoises”, K. S. Norris, ed., Univ. Calif. Press, Berkeley.Google Scholar
  659. MacKay, R. S., Rumage, W. T., and Becker, A., 1977, Sound velocity in spermaceti organ of a young sperm whale, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  660. Malins, D. C., and Varanasi, V., 1977, Acoustic pathways in the cetacean head: Assessment of sound properties through the use of a new microtechnique, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  661. Markov, V. I., and Ostrovskaya, V. M., 1975, On the “identification” signal of dolphins, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stov Naukova Dumka, Kiev.Google Scholar
  662. Markov, V. I., Tanchevskaya, V. A., and Ostrovskaya, V. M., 1974, Organization of acoustic signals in the Black Sea bottlenose dolphins (Tursiops truncatus), in: “Morfologiya, Fiziologiya i Akustika Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatel’stvo Nauka, Moscow.Google Scholar
  663. McCormick, J. G., 1968, “Theory of hearing for delphinids”, Doctoral Dissertation, Princeton University, New Jersey.Google Scholar
  664. McCormick, J. G., 1972, The physiology of hearing in the porpoise, in: “Marine Mammals: Biology and Medicine”, S. H. Ridgway, ed., Thomas, Springfield, Ill.Google Scholar
  665. McCormick, J. G., Wever, E. G., Palin, J. and Ridgway, S. H., 1970, Sound conduction in the dolphin ear, Jour. Acoust. Soc. Amer., 48:1418.CrossRefGoogle Scholar
  666. McCormick, J. G., Wever, E. G., Ridgway, S., and Palin, J., 1970, Function of the porpoise ear as shown by its electrical potentials (Abstract), Jour. Acoust. Soc. Amer., 47:67.CrossRefGoogle Scholar
  667. McDonald-Renaud, D. L., 1974, Sound localization in the bottlenose porpoise, Tursiops truncatus (Montague), Doctoral Dissertation, Univ. of Hawaii, Honolulu.Google Scholar
  668. Mead, J. G., 1972, On the anatomy of the external nasal passages and facial complex in the family delphinidae of the order cetacea, Doctoral Dissertation, Univ. Chicago, Chicago.Google Scholar
  669. Mermoz, H., 1967, Discussion, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  670. Metsaveer, J., 1971, Algorithm for calculation of echo-pulses from elastic spherical shells in fluid by summation of wave groups, Inst. of Cybernetics, Acad. Sci. Eston. SSR Tallinn (Preprint), 3:1.Google Scholar
  671. Miyasnikov, V. S., and Titov, M. S., 1975, On the identification of marine animals by their acoustic signals, Izvestiya TINRO, 94:38.Google Scholar
  672. Mizue, T., Nishiwaki, M., and Takemura, A., 1971, The underwater sound of Ganges river dolphins (Platanista gangetica), Sci. Repts. Whales Res. Inst., 23:123.Google Scholar
  673. Mizue, T., Takemura, A., and Nakasai, K., 1967, Studies on the little toothed whales in the west sea area of Kyushu, XIII, Mating calls and others of the bottlenose dolphin caught at Arikawa in Goto Is., Nagasaki Pref. Bull. Fac. Fish. Nagasaki Univ., 23:197.Google Scholar
  674. Mizue, T., Takemura, A., Nakasai, K., 1968, Studies on the little toothed whales in the west sea area of Kyushu, XV, Underwater sound of the Chinese finless porpoise caught in the Japanese coastal sea, Bull. Fac. Fish. Nagasaki Univ., 25:25.Google Scholar
  675. Mohl, B., 1967, Frequency discrimination in the common seal and a discussion of the concept of upper hearing limit, in: “Underwater Acoustics”, V. M. Albers, ed., Plenum Press, New York.Google Scholar
  676. Mohl, B., 1968, Auditory sensitivity of the common seal in air and water, Jour. Aud. Res., 8:27.Google Scholar
  677. Mohl, B., 1968, Hearing in seals, in: “The Behavior and Physiology of Pinnipeds”, R. J. Harrison, R. C. Hubbard, R. S. Peterson, C. E. Rice, and R. J. Schusterman, eds., Appleton-Century-Crofts, New York.Google Scholar
  678. Mohl, B., and Andersen, S., 1973, Echolocation: high-frequency component in the click of the harbour porpoise (Phocoena Ph. L), Jour. Acoust. Soc. Amer., 54:1368.CrossRefGoogle Scholar
  679. Mohl, B., Ronald, K., and Terhune, J. M., 1972, The harp seal, Pagophilus groenlandicus (Erxleben, 1777), XVIII, Underwater calls, in: “Symposium on the Biology of the Seal”, G. B. Farquhar, ed., Univ. of Guelph, Ontario.Google Scholar
  680. Moore, J. C., 1968, Relationships among the living genera of beaked whales, Fieldiana Zoology, 53(4):209.Google Scholar
  681. Moore, P. 1975, Underwater localization of click and pulsed pure tone signals by the California sea lion (Zalophus californianus), Jour. Acoust. Soc. Amer., 57:406.CrossRefGoogle Scholar
  682. Moore, P., and Au, W., 1975, Underwater localization of pulsed pure tones by the California sea lion (Zalophus californianus), Jour. Acoust. Soc. Amer., 58:721.CrossRefGoogle Scholar
  683. Moore, P. W. B., and Schusterman, R. J., 1977, The upper limit of underwater auditory frequency discrimination in the California sea lion, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  684. Morgan, D. W., 1971, The reactions of belugas to natural sound playbacks, in: “Proceedings of the Seventh Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  685. Morgane, P. J., and Jacobs, N.S., 1972, Comparative anatomy of the cetacean nervous system, in: “Functional Anatomy of Marine Mammals”, R. J. Harrison, ed., Academic Press, New York.Google Scholar
  686. Morii, H., and Kanazu, R., 1972, Fatty acids in the foetus, nurseling and adult of a kind of dolphin, Stenella attenuata, Bull. Jap. Soc. Scient. Fish., 38:599.CrossRefGoogle Scholar
  687. Morozov, V. P., Akopian, A. I., Zaytseva, K. A. and Titov, A. A., 1975, On the characteristics of spacial directivity of the dolphin acoustic system in signal perception against the background of noise, in: “Marine Mammals, Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals”, G. B. Agarkov, ed., Naukova Dumka, Kiev (English translation JPRS L/6049).Google Scholar
  688. Morozov, V. P., Akopian, A. I., Burdin, V. I., Zaytseva, K. A. and Sokovykh, Yu. A., 1972, Tracking frequency of the location signals of dolphins as a function of distance to the target, Biofizika, 17:139 (English translation JPRS 55729).PubMedGoogle Scholar
  689. Morozov, V. P., Akopian, A. I., Burdin, V. I., Donskov, A. A., Zaytseva, K. A., and Sokovykh, Yu. A., 1971, Audiogram of the dolphin, Tursiops truncatus, Fiziologicheskiy Zhurnal imeni I. M. Sechenova, 57(6):843.Google Scholar
  690. Morris, R. J., 1973, The lipid structure of the spermaceti organ of the sperm whale (Physeter catodon), Deep-Sea Res., 20:911.Google Scholar
  691. Murchison, A. E., 1976, Range Resolution by an Echolocating Dolphin (Tursiops truncatus), Jour. Acoust. Soc. Amer., 60:S5.CrossRefGoogle Scholar
  692. Murchison, A. E., 1979, “Maximum Detection Range and Range Resolution in Echolocating Tursiops truncatus (Montague)”, Doctoral Dissertation U. of Calif. at Santa Cruz, Calif. (manuscript).Google Scholar
  693. Murchison, A. E., and Nachtigall, P. E., 1977, Three dimensional shape discrimination by an echolocating bottlenose porpoise (Tursiops truncatus), in: “Proceedings (Abstracts) of the Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  694. Murchison, A. E., and Penner, R. H., 1975, Open water echolocation in the bottlenose dolphin (Tursiops truncatus): Metallic sphere detection thresholds as a function of distance, in: “Conference on the Biology and Conservation of Marine Mammals, Abstracts”, 2:42.Google Scholar
  695. Nachtigall, P. E., 1969, Visual size discrimination in the East Asian clawless otter (Amblyonyx cineria) in air and under water, in: “Proceedings of the Sixth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute Press, Menlo Park, Calif.Google Scholar
  696. Nachtigall, P. E., 1971, Spatial discrimination and reversal based on differential magnitude of reward in the dolphin Tursiops truncatus, in: “Proceedings of the Eighth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  697. Nachtigall, P. E., 1976, “Food-Intake and food-rewarded instrumental performance in dolphins as a function of feeding schedule”, Doctoral Dissertation, Univ. of Hawaii, Honolulu.Google Scholar
  698. Nachtigall, P. E., 1977, A comparison of porpoise (Tursiops truncatus) performance with fish and a prepared food, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  699. Nachtigall, P. E., Murchison, A. E., and Au, W. W. L., 1978, Discrimination of solid cylinders and cubes by a blindfolded echolocating bottlenose dolphin (Tursiops truncatus), Jour. Acoust. Soc. Amer., 64(1):587.Google Scholar
  700. Naumov, N. P., 1973, Signal (biological) fields and their significance for animals, Zhurnal Obshchey Biologii, 6:808.Google Scholar
  701. Naumov, N. P., 1975, Biological (signal) fields and their significance in mammalian life, Vestnik Akademii Nauk SSSR, 45(2):55.Google Scholar
  702. Naumov, N. P., 1975, Bionics and acoustics, Berliner Zeitung, (E. Germany) Lomonosov St., Univ., 4.Google Scholar
  703. Neproshin, A. Yu., 1975, Sounds as part of the behavior of the Pacific beluga, Priroda, 4:99 (English translation: JPRS 65658).Google Scholar
  704. Ness, A. R., 1967, A measure of asymmetry of the skulls of odontocete whales, Jour. Zool., 153:209.CrossRefGoogle Scholar
  705. Norris, K. S., 1968, The evolution of acoustic mechanisms in odontocete cetaceans, in: “Evolution and Environment”, E. T. Drake, ed., Yale Univ. Press, New Haven.Google Scholar
  706. Norris, K. S., 1969, The echolocation of marine mammals, in: “The Biology of Marine Mammals”, H. T. Andersen, ed., Academic Press, New York.Google Scholar
  707. Norris, K. S., 1974, “The Porpoise Watcher”, George J. McLeod Limited, Toronto.Google Scholar
  708. Norris, K. S. and Evans, W. E., 1967, Directionality of echolocation clicks in the rough-tooth porpoise Steno bredanensis (Lesson), in: “Marine Bio-Acoustics, Proceedings Second Symposium on Marine Bio-Acoustics, New York”, W. N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  709. Norris, K. S., and Harvey, G. W., 1972, A theory for the function of the spermaceti organ of the sperm whale, in: “Animal Orientation and Navigation,” S. R. Galler et al., eds., National Aeronautics and Space Administration, Washington, D. C.Google Scholar
  710. Norris, K. S., and Harvey, G. W., 1974, Sound transmission in the porpoise head, Jour. Acoust. Soc. Amer., 56:659.CrossRefGoogle Scholar
  711. Norris, K. S., and Watkins, W. A., 1971, Underwater sounds of Arctocephalus philippii, the Juan Fernandez fur seal, Antarct. Res. Ser., 18:169.CrossRefGoogle Scholar
  712. Norris, K. S., Evans, W. E. and Turner, R. N., 1967, Echolocation of an Atlantic bottlenose porpoise during discrimination, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  713. Norris, K. S., Dormer, K. J., Pegg, J., and Liese, G. J., 1971, The mechanisms of sound production and air recyling in porpoises: A preliminary report, in: “Proc. 8th Annual Conf. Biol. Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif,Google Scholar
  714. Norris, K. S., Harvey, G. W., Burzell, L. A., and Krishna Kartha, T. D., 1972, Sound production in the freshwater por1poises Sotalia and Inia, in Rio Negro, Brazil, in: “Investigations on Cetacea Vol. 4.”, G. Pilleri, ed., Benetelli AG, Berne.Google Scholar
  715. Northrop, J., Cummings, W. C., and Morrison, M. F., 1971, Underwater 20-Hz signals recorded near Midway Island, Jour. Acoust. Soc. Amer., 49:1909.CrossRefGoogle Scholar
  716. Northrop, J., Cummings, W. C., and Thompson, P. O., 1968, 20-Hz signals observed in the central pacific, Jour. Acoust. Soc. Amer., 43:383.CrossRefGoogle Scholar
  717. Ostroumov, G. A., 1968, At what distances could marine animals communicate by means of electromagnetic waves (in problems of wave propagation), Izdatel’stvo Leningradskogo Universiteta, 8:3.Google Scholar
  718. Paul, L. J., 1969, Dolphin noises recorded by echosounder, New Zealand Jour. Marine and Freshwater Res., 3:343.CrossRefGoogle Scholar
  719. Payne, R. S., and McVay, S., 1971, Songs of humpback whales, Science, 173:587.CrossRefGoogle Scholar
  720. Payne, R. S., and Payne, K., 1972, Underwater sounds of southern right whales, Zoologica, 56:159.Google Scholar
  721. Payne, R., and Webb, D., Orientation by means of long-range acoustic signaling in Baleen whales, in: “Orientation: Sensory Basis”, H. E. Adler, ed., Ann. N. Y. Acad. Sci., 188:110.Google Scholar
  722. Penner, R. H., 1977, Paired simultaneous echo ranging by Tursiops truncatus, in: “Proc. (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  723. Penner, R., and Murchison, A. E., 1970, Experimentally demonstrated echolocation in the Amazon river porpoise Inia geoffrensis (Blainville), in: “Proceedings of the Seventh Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  724. Penner, R. H., and Murchison, A. E., 1970, Experimentally demonstrated echolocation in the Amazon River porpoise, Inia geoffrensis (Blainville), Naval Undersea Center, Technical Publication 187, San Diego, Calif.Google Scholar
  725. Perkins, P. J., 1966, Communication sounds of finback whales, Norsk Hvalfangst-Tidend, 55:199.Google Scholar
  726. Perkins, P. J., Fish, M. P., and Mowbray, W. H., 1966, Underwater communication sounds of sperm whale Physeter catodon, Norsk Hvalfangst-Tidende, 55:225.Google Scholar
  727. Perrin, W. F., and Hunter, J. R., 1972, Escape behavior of the Hawaiian spinner porpoise (Stenella cf. S. longirostris), U. S. Nat. Mar. Fish. Bull., 70:49.Google Scholar
  728. Perryman, W. and Au, D., 1977, Aerial observations of evasive behavior of dolphin schools, in; “Proceedings 2nd Conference Bio. Mar. Mammals”, San Diego.Google Scholar
  729. Pilleri, G., 1970, Records of cetaceans off the Italian and Dalmatian coasts, in: “Investigations on Cetacea, Vol. 2”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  730. Pilleri, G., and Busnel, R.-G., 1969, Brain/body weight ratios in Delphinidae, Acta. Anat. 73:92.CrossRefGoogle Scholar
  731. Pilleri, G., and Gihr, M., 1970, Brain-body weight ratio of Platanista gangetica, in; “Investigations on Cetacea, Vol. 2”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  732. Pilleri, G., Kraus, C., and Gihr, M., 1970, Frequenzanalyse der Laute von Platanista indi (Cetacea), Rev. Suisse Zool., 77:922.PubMedGoogle Scholar
  733. Pilleri, G., Kraus, C., and Gihr, M., 1971, Physical analysis of the sounds emitted by Platanista indi, in: “Investigation on Cetacea, Vol. 3”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  734. Popov, V. V., and Supin, A. Yu., 1976, Determination of the hearing characteristics of dolphins by measuring induced potentials, Fiziol. Zh. SSSR im I. M. Sechenova, 62:550.PubMedGoogle Scholar
  735. Poulter, T. C., 1966, Biosonar, in: “McGraw-Hill Yearbook of Science and Technology”, McGraw-Hill, New York.Google Scholar
  736. Poulter, T. C., 1966, The use of active sonar by the California sea lion Zalophus californianus (Lesson), Jour. Aud. Res., 6:165.Google Scholar
  737. Poulter, T. C., 1967, Systems of echolocation, in: “Animal Sonar Systems: Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  738. Poulter, T. C., 1968, Marine mammals, in: “Animal Communication”, T. A. Sebeok, ed., Indiana University Press, Bloomington.Google Scholar
  739. Poulter, T. C., 1968, Underwater vocalization and behavior of pinnipeds, in: “The Behavior and Physiology of Pinnipeds”, R. J. Harrison, et. al., eds., Appleton-Century-Crofts, New York.Google Scholar
  740. Poulter, T. C., 1968, Vocalization of the gray whales in Laguna Oja de Liebre (Scammon’s Lagoon), Baja, California, Mexico, Norsk Hvalfangsttid, 57:53.Google Scholar
  741. Poutler, T. C., 1969, Conditioning marine mammals for testing echolocation abilities, in: “Proceedings of the Sixth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  742. Poulter, T. C., 1969, Sonar discrimination ability of the California sea lion, Proceedings California Acad. Sci. 36:381.Google Scholar
  743. Poulter, T. C., 1969, Sonar of penguins and fur seals, Proceedings California Academy Science, 36:363.Google Scholar
  744. Poulter, T. C., 1970, Ultrasonic frequencies recorded from three captive blind dolphins, Platanista gangetica, in; “Proceedings of the Seventh Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  745. Poulter, T. C., 1972, Sea lion vibrissae — an acoustic sensor, in; “Proceedings of the Ninth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  746. Powell, B. A., 1966, Periodicity of vocal activity of captive Atlantic bottlenose dolphins, Tursiops truncatus, Bull. So. Calif. Acad. Sci., 65; 237.Google Scholar
  747. Pryor, K. and Norris, K. S., 1978, The tuna porpoise problem; Behavioral aspects, Oceanus, 21;31.Google Scholar
  748. Purves, P. E., 1966, Anatomy and Physiology of the outer middle ear in cetaceans, in; “Whales, Dolphins and Porpoises”, K. S. Norris, ed., Univ. Calif. Press, Berkeley.Google Scholar
  749. Purves, P. E., 1967, Anatomical and experimental observations on the cetacean sonar systems, in; “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  750. Purves, P. E., and Pilleri, G., 1973, Observations on the ear, nose, throat and eye of Platanista indi., in; “Investigations on Cetacea”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  751. Ray, C., 1967, Social behavior and acoustics of the Weddell seal, Antarct. Jour. U. S., 2(4); 105.Google Scholar
  752. Ray, G. C., 1972, “Marine mammals; The biological basis of productivity and conservation”, Smithsonian Inst., Wash. D. C.Google Scholar
  753. Ray, G. C., and Watkins, W. A., 1972, Social function of phonation in walrus, in: “Symposium on the Biology of the Seal”, G. B. Farquhar, ed., Univ. of Guelph, Ontario.Google Scholar
  754. Ray, G. C., Watkins, W. A., and Burns, J. J., 1969, The underwater song of Erignathus (bearded seal), Zoologica 54:79.Google Scholar
  755. Renaud, D. L., and Popper, A. N., 1975, Sound localization by the bottlenose porpoise, Tursiops truncatus, Jour. Exp. Biol. 63:569.Google Scholar
  756. Repenning, C. A., Underwater hearing in seals: Functional morphology, in: “Functional Anatomy of Marine Mammals”, R. J. Harrison, ed., Academic Press, New York.Google Scholar
  757. Resvov, R. N., Savel’ev, Ya. A., and Flenov, A. B., 1973, The study of dolphin’s echolocator ability in detection of different targets, difference in range and angle on vertical and horizontal planes, in: “Proceedings of the 8th All-Union Acoustical Conference”, Leningrad.Google Scholar
  758. Reysenbach de Haan, F. W., 1966, Listening underwater: Thoughts on sound cetacean hearing, in: “Whales, Dolphins, and Porpoises”, K. S. Norris, ed., Univ. of Calif. Press, Berkeley.Google Scholar
  759. Reznik, A. M., Skomyakov, V. M., and Chupakov, A. G., 1970, Echolocation activity of Black Sea Tursiops truncatus being presented targets, Trudy Akusticheskogo Instituta, 12:116.Google Scholar
  760. Reznik, A. M. Skomyakov, V. M., Chernyshev, O. B., and Chupakov, A. G., 1968, On some peculiarities of dolphin communication system, in: “Trudy VIoy Vsesoijuznoyi Akusticheskoi Konferentsii”, Moscow.Google Scholar
  761. Reznikov, A. E., 1970, On sound-vision in dolphins, in: “Tezisy Dokladov 23ey Nauchno-tekhnicheskoy. Konferentsii Lenin gradskogo Institute Aviatsionnogo Priborostroeyniya”, Leningrad.Google Scholar
  762. Reznikov, A. E., 1971, Mechanisms of delphinid hydroacoustic ranging, Priroda, 9:171.Google Scholar
  763. Rice, D. W., 1978, Beaked whales, in: “Marine Mammals”, D. Haley, ed., Pacific Search Press.Google Scholar
  764. Ridgway, S. H., 1966, Dall porpoise, Phocoenoides dalli (True): Observations in captivity and at sea, Norsk Hvalfangst-Tidende, 5:97.Google Scholar
  765. Ridgway, S. H., 1972, (ed.) “Mammals of the Sea, Biology and Medicine”, Charles C. Thomas, Springfield, Ill.Google Scholar
  766. Ridgway, S. H., and Brownson, R. W., 1979, Relative brain sizes and cortical surface areas in odontocetes,(In preparation).Google Scholar
  767. Ridgway, S. H., and McCormick, J. G., 1967, Anesthetization of porpoises for major surgery, Science, 158:510.PubMedCrossRefGoogle Scholar
  768. Ridgway, S. H., Flanagan, N. J., and McCormick, J. G., 1976, Brain-spinal cord ratios in porpoises: possible correlation with intelligence and ecology, Psychon. Sci., 6:491.Google Scholar
  769. Ridgway, S. H., McCormick, J. G., and Wever, E. G., 1974, Surgical approach to dolphin’s ear, Jour. Exp. Zool., 188:265.CrossRefGoogle Scholar
  770. Ridgway, S. H., Scronce, B. L., and Kanwisher, J., 1969, Respiration and deep diving in the bottlenosed porpoise, Science, 166:1651.PubMedCrossRefGoogle Scholar
  771. Ridgway, S. H., Carder, D. A., Green, R. F., Gaunt, A. S., Gaunt, S. L., and Evans, W. E., 1977, Electromyography and dolphin sound production, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals, San Diego.Google Scholar
  772. Rieger, M. F. P., and Johnson, R. A., 1977, Chorusing patterns of pilot whales, Globicephala macrorynchus, in: “Proceedings (Abstracts) Second Conference on the Biology of Marine Mammals”, San Diego.Google Scholar
  773. Robisch, P. A., Malins, D. C., Best, R., and Varanasi, V., 1972, Differences in triacylglycerols from acoustic tissues and posterior cranial blubber of the narwhal (Monodon monoceros), Biochem. Jour., 130:33.Google Scholar
  774. Rodionov, V. A., 1975, Morpho-functional features of the respiratory musculature of dolphins, Zoologicheskiy Zhurnal, 53(6):919.Google Scholar
  775. Romanenko, Ye. V., 1972, Near acoustic field of the bottlenose dolphin (Tursiops truncatus), Voe Vsesoyuznoye Soveshchaniye po izucheniyu morskikh mlekopitayushchikh, Makhachkala, Part 11:200.Google Scholar
  776. Romanenko, Ye. V., 1973, Mechanism of emission and formation of echolocating signals of the bottlenose dolphin (Tursiops truncatus), in; “Eighth Annual All-Union Acoustical Conference”, Moscow.Google Scholar
  777. Romanenko, Ye. V., 1973, Sound signals in the near field of the Atlantic bottlenose dolphin (Tursiops truncatus, Delphinidae), Zoologicheskiy Zhurnal, 52(11):1698 (English translation JPRS 61553).Google Scholar
  778. Romanenko, Ye. V., 1974, On the mechanism of the dolphin emission of some pulse and whistle signals, in: “Morfologiya, Fiziologiya i Akustika Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatel’stvo Nauka, Moscow.Google Scholar
  779. Romanenko, Ye. V., 1974, “Physical fundamentals of bioacoustics”, Fizichekiye Osnovy Bioakustik, Moscow (English translation JPRS 63923).Google Scholar
  780. Romanenko, Ye. V., 1975, On the hearing of dolphins, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  781. Romanenko, Ye. V., 1975, Recording sounds in the dolphin’s respiratory system, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  782. Romanenko, Ye. V., Tomilin, A. G. and Artemenko, B. A., 1965, in: “Bionics”, M. G. Gaaze-Rapoport and V. E. Yakobi, eds., Nauka, Moscow (English translation JPRS 35125).Google Scholar
  783. Romanenko, Ye.. V., Yanov, V. G., and Akopian, A. I., 1974, A method of studying the echolocating system of the dolphin using a radiotelemetry system, in: “Morfologiya, Fiziologiya i Akustika Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatel’stvo Nauka, Moscow.Google Scholar
  784. Ryan, W. W., Jr., 1978, Acoustical reflections from aluminum cylindrical shells immersed in water, Jour. Acous. Soc. Amer., 64:1159.CrossRefGoogle Scholar
  785. Sales, G., and Pye, D., 1974, “Ultrasonic Communication by Animals,” Chapman and Hall, London.CrossRefGoogle Scholar
  786. Saprykin, V. A., Korolev, V. I., Kovtuneko, S. V., and Dmitriyeva, Ye. S., 1973, An investigation of spatial frequency characteristics of the Tursiops echolocator in object identification, Doklady Akademii Nauk SSSR, 214(3):727.Google Scholar
  787. Saprykin, V. A., Korolev, V. I., Kovtunenko, S. V., Dmitriyeva, Ye. S., and Sokovykh, Yu. A., 1975, Spatial analysis of the tonal supra threshold signals in dolphins, Biofizika, 20:319.PubMedGoogle Scholar
  788. Saprykin, V. A., Kovtuneko, S. V., Ekker, I. V., Dmitriyeva, Ye. S., and Korolev, V. I., 1975, Invariance of the sensing properties of the auditory analyser of the dolphin in differentiating pulse tone signal, Doklady Akademii Nauk SSSR, 221(4):999.Google Scholar
  789. Saprykin, V. A., Kovtuneko, S. V., Korolev, V. I., Dmitriyeva, Ye. S., and Belov, B. I., 1975, Study of the auditory perception of dolphins as a function of signal characteristics in the time domain, Biofizika, 20(4):720.PubMedGoogle Scholar
  790. Saprykin, V. A., Kovtuneko, S. V., Korolev, V. I., Dmitriyeva, Ye. S., Belov, B. I., and Mar’yasin, V. G., 1975, Study of the auditory perception of dolphins as a function of signal characteristics in the time domain, Biofizika, 20 (English translation JPRS 65877).Google Scholar
  791. Saprykin, V. A., Kovtuneko, S. V., Korolev, V. I., Dmitriyeva, Ye. S., Ol’shanskiy, V. I., and Bekker, I. V., 1976, Invariance of the auditory perception relative to frequency-time signal transformations in the dolphin Tursiops truncatus, Zhurnal Evolyutsionnoy Biokhimii I Fiziologii (English translation JPRS L/6275).Google Scholar
  792. Schenkkan, E. J., 1971, The occurrence and position of the “connecting sac” in the nasal tract complex of small odontocetes (Mammalia, Cetacea), Beaufortia, 19:37.Google Scholar
  793. Schenkkan, E. J., 1972, On the nasal tract complex of Pontoporia blainvillei GERVAIS and d’ORBIGNY, 1884 (Cetacea, Platanistidae), in: “Investigations on Cetacea Vol 4”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  794. Schenkkan, E. J., 1973, On the comparative anatomy and function of the nasal tract in odontocetes (Mammalia, Cetacea), Bijdragen Tot de Dierkunde, 43(3):127.Google Scholar
  795. Schenkkan, E. J., and Purves, P. E., 1973, The comparative anatomy of the nasal tract and the function of the spermaceti organ in the Physeteridae (Mammalia, Odontoceti), Bijdragen Tot de Dierkunde, 43(1):93.Google Scholar
  796. Schevill, W. E., 1968, Sea lion echo ranging?, Jour. Acoust. Soc. Am., 43:1458.CrossRefGoogle Scholar
  797. Schevill, W. E., and Watkins, W. A., 1966, Sound structure and directionality in Orcinus (Killer Whale), Zoologica, 51:71.Google Scholar
  798. Schevill, W. E., and Watkins, W. A., 1971, Directionality of the sound beam in Leptonychotes weddelli (Mammalia, Pinnipedia), Antarct. Res. Ser., 18:163.CrossRefGoogle Scholar
  799. Schevill, W. E., and Watkins, W. A., 1971, Pulsed sounds of the porpoise Lagenorhynchus australis, Breviora, 366:1.Google Scholar
  800. Schevill, W. E., and Watkins, W. A., 1972, Intense low-frequency sounds from an Antarctic minke whale, Balaenoptera acutorostrata, Breviora, 388:1.Google Scholar
  801. Schevill, W. E., Watkins, W. A., and Ray, G. C., 1966, Analysis of underwater Odobenus calls with remarks on the development and function of the pharyngeal pouches, Zoologica, 51:103.Google Scholar
  802. Schevill, W. E., Watkins, W. A., and Ray, G. C., 1969, Click structure in the porpoise, Phocoena phocoena, Jour. Mamm., 50:721.CrossRefGoogle Scholar
  803. Schusterman, R. J., 1966, Serial discrimination-reversal learning with and without errors by the California sea lion, J. Exp. Analysis Behav., 9(5):97CrossRefGoogle Scholar
  804. Schusterman, R. J., 1966, Serial discrimination-reversal learning with and without errors by the California sea lion, J. Exp. Analysis Behav., 9(5):97.CrossRefGoogle Scholar
  805. Schusterman, R. J., 1966, Underwater click vocalizations by a California sea lion: effects of visibility, Psychol. Rec., 16:129.Google Scholar
  806. Schusterman, R. J., 1967, Perception and determinants of underwater vocalization in the California sea lion, in: “Animal Sonar Systems, Biology and Bionics”, R.-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  807. Schusterman, R. J., 1968, Experimental laboratory studies of pinniped behaviour, in: “The Behaviour and Physiology of Pinnipeds”, R. J. Harrison, R. C. Hubbard, R. S. Peterson, C. E. Rice and R. J. Schusterman, eds., Appleton-Century-Crofts, New York.Google Scholar
  808. Schusterman, R. J., 1969, Aerial and underwater visual acuity in the California sea lion as a function of luminance, Naval Undersea Research and Development Center, San Diego, Calif., Final Report.Google Scholar
  809. Schusterman, R. J., 1972, Visual acuity in pinnipeds, in: “Behavior of Marine Animals Vol. II”, H. E. Winn and B. Olla, eds., Plenum Press, New York.Google Scholar
  810. Schusterman, R. J., 1973, A note comparing the visual acuity of dolphins with that of sea lions, Cetology, 15:1.Google Scholar
  811. Schusterman, R. J., 1974, Low false-alarm rates in signal detection by marine mammals, Jour. Acoust. Soc. Amer., 55:845.CrossRefGoogle Scholar
  812. Schusterman, R. J., 1976, California sea lion auditory detection and variation of reinforcement schedules, Jour. Acoust. Soc. Amer., 59:997.CrossRefGoogle Scholar
  813. Schusterman, R. J., 1977, Temporal patterning in sea lion barking (Zalophus californianus), Behavioral Biology, 20:404.CrossRefGoogle Scholar
  814. Schusterman, R. J., and Balliet, R. F., 1969, Underwater barking by male sea lions (Zalophus californianus), Nature 222:1179.PubMedCrossRefGoogle Scholar
  815. Schusterman, R. J., and Balliet, R. F., 1970, Conditioned vocalization as a technique for determining visual acuity thresholds in the sea lion, Science, 169:498.PubMedCrossRefGoogle Scholar
  816. Schusterman, R. J., and Balliet, R. F, 1970, Visual acuity of the harbor seal and the Steiler sea lion under water, Nature, 226:563.PubMedCrossRefGoogle Scholar
  817. Schusterman, R. J., and Balliet, R. F., 1971, Aerial and underwater visual acuity in the California sea lion (Zalophus californianus) as a function of luminance, Ann. N.Y. Acad. Sci., 188:37.PubMedCrossRefGoogle Scholar
  818. Schusterman, R. J., and Barrett, B., 1973, Amphibious nature of visual acuity in the Asian ‘clawless’ otter, Nature, 244:518.PubMedCrossRefGoogle Scholar
  819. Schusterman, R. J., and Dawson, R. G., 1968, Barking, dominance, and territoriality in male sea lions, Science, 160:434.PubMedCrossRefGoogle Scholar
  820. Schusterman, R. J., and Johnson, B. W., 1975, Signal probability and response bias in California sea lions, Psych. Rec, 25:39.Google Scholar
  821. Schusterman, R. J., and Kersting, D., 1978, Selective attention in discriminative echolocation by the porpoise (Tursiops truncatus), Paper read at the Animal Behavior Society Annual Meeting, June 19–23, U. of Wash., Seattle.Google Scholar
  822. Schusterman, R. J., Balliet, R. F., and Nixon, J., 1972, Underwater audiogram of the California sea lion by the conditioned vocalization technique, J. exp. Analysis Behav., 17:339.CrossRefGoogle Scholar
  823. Schusterman, R. J., Balliet, R. F., and St. John, S., 1970, Vocal displays by the gray seal, the harbor seal and the Steiler sea lion, Psychon. Sci., 18:303.Google Scholar
  824. Schusterman, R. J., Barrett, B., and Moore, P. W. B., 1975, Detection of underwater signals by a California sea lion and a bottlenose porpoise: Variation in the payoff matrix, Jour. Acoust. Soc. Amer., 57:1526.CrossRefGoogle Scholar
  825. Scronce, B. L., and Johnson, C. S., 1975, Bistatic target detection by a bottlenosed porpoise, Jour. Acoust. Soc. Am., 59(4):1001.CrossRefGoogle Scholar
  826. Seeley, R. L., Flanigan, W. F., and Ridgway, S. H., 1976, A technique for rapidly assessing the hearing of the bottlenosed porpoise Tursiops truncatus, Naval Undersea Center TP 522, San Diego, Calif.Google Scholar
  827. Sergeant, D. E., 1978, Ecological isolation in some cetacea, in: “Recent Advances in the Study of Whales and Seals”, A. N. Severtsov, ed., Nauka, Moskow.Google Scholar
  828. Shevalev, A. Ye, and Flerov, A. I., 1975, Study of the communicative signal of dolphins connected with food-finding, Bionika, 9:119.Google Scholar
  829. Shirley, D. J., and Diercks, K. J., 1970, Analysis of the frequency response of simple geometric targets, Jour. Acoust. Soc. Am., 48:1275.CrossRefGoogle Scholar
  830. Sokolov, V., 1971, Cetacean research in the USSR, in: “Investigations on Cetacea Vol. 3”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  831. Sokolov, V., and Kalashnikova, M., 1971, The ultrastructure of epidermal cells in Phocoena phocoena, in: “Investigations on Cetacea Vol. 3”, G. Pilleri, ed., Bentelli AG, Berne.Google Scholar
  832. Sokolov, V. Ye., Ladygina, T. F., and Supin, A. Ya., 1972, Localization of sensory areas in the dolphin’s cerebral cortex, Doklady Akademii Nauk SSSR, 200(2).Google Scholar
  833. Solntseva, G. N., 1971, The comparative anatomical and histological characteristics of the structure of the external and internal ear of certain dolphins, Issledovaniya Morskikh Mlekopitayushchikh, Trudy Atlantnipo, 39:369.Google Scholar
  834. Solntseva, G. N., 1974, Function of the hearing organ underwater, Priroda, 10:21 (English translation JPRS 65061).Google Scholar
  835. Solntseva, G. N., 1975, Objectives and prospects of research on routes of sound transmission in cetaceans, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  836. Solntseva, G. N., 1975, Morpho-functional peculiarities of the hearing organ in terrestrial, semiaquatic and aquatic mammals, Zoologicheskiy Zhurnal, 54(10):1529.Google Scholar
  837. Solukha, B. V., and Mantulo, A. P., 1973, Mechanism of sound transmission in dolphins, in; “Nekotorye voprosy ekologii i morfologii zhivotnykh” (Materially Nauchnoy Konferentsii), Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  838. Stewart, J. L., 1968, Analog simulation studies in echoranging, T. D. R. No. AMRL-TR-68–40, Aerospace Medical Div., U.S.A.F. Systems Command, Washington, D.C.Google Scholar
  839. Sokolov, V. Ye. (ed.), 1978, Electrophysiological studies of the dolphin’s brain, Izdatel’stvo, Nauka, Moscow.Google Scholar
  840. Spong, P., and White, D., 1971, Visual acuity and discrimination learning in the dolphin (Lagenorhynchus obliquidens), Exp. Neurol., 31:341.CrossRefGoogle Scholar
  841. Spong, P., Bradford, J., and White, D., 1970, Field studies of the behaviour of the killer whale (Orcinus orca), in: “Proceedings of the Seventh Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  842. Spong, P., Michaels, H., and Spong, L., 1972, Field studies of the behaviour of the killer whale (Orcinus orca) II, in: “Proceedings of the Ninth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  843. Spong, P., Spong, L., and Spong, Y., 1972, Field studies of the behaviour of the killer whale (Orcinus orca) III, in: “Proceedings of the Ninth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  844. Sukhoruchenko, M. N., 1971, Upper limit of hearing of dolphins with reference to frequency, Trudy Akusticheskogo Instituta, 12:194.Google Scholar
  845. Sukhoruchenko, M. N., 1973, Frequency discrimination of dolphin (Phocoena phocoena), Fiziologicheskiy zhurnal imeni I. M. Sechenova, 59(8):1205.Google Scholar
  846. Supin, A. Ya., and Sukhoruchenko, M. N., 1970, The determination of auditory thresholds in Phocoena phocoena by the method of skin-galvanic reaction, Trudy Akusticheskogo Instituta, 12:194.Google Scholar
  847. Supin, A. Ya., and Sukhoruchenko, M. N., 1974, Characteristics of acoustic analyzer of the Phocoena phocoena L. dolphin, in: “Morphology, Physiology, and Acoustics of Marine Mammals”, V. Ye. Sokolov, ed., Nauka, Moscow (English translation JPRS 65139).Google Scholar
  848. Tavolga, W. N., 1977, Mechanisms for directional hearing in the sea catfish (Arius felis), Jour. Exp. Biol., 67:97.Google Scholar
  849. Terhune, J. M., 1974, Directional hearing of a harbor seal in air and water, Jour. Acoust. Soc. Amer., 56:1862.CrossRefGoogle Scholar
  850. Terhune, J. M., and Ronald, K., 1972, The harp seal, Pagophilus groenlandicus (Erxleben, 1777), X. The underwater audiogram, Can, J. Zool., 50:565.CrossRefGoogle Scholar
  851. Terhune, J. M., and Ronald, K., 1975, Underwater hearing sensitivity of two ringed seals (Pusa hispida), Can. J. Zool., 53:227.PubMedCrossRefGoogle Scholar
  852. Terhune, J. M., and Ronald, K., 1975, Masked hearing thresholds of ringed seals, Jour. Acoust. Soc, Amer., 58:515.CrossRefGoogle Scholar
  853. Thompson, P. O., and Cummings, W. C., 1969, Sound production of the finback whale, Balaeoptera physalus, and Eden’s whale, B. edeni, in the Gulf of California (abstract), in: “Proceedings of the Sixth Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  854. Thompson, R. K. R., and Herman, L. M., 1975, Underwater Frequency Discrimination in the Bottlenose Dolphin (1–140 kHz) and Human (1–8 kHz), Jour. Acoust. Soc. Amer., 57:943.CrossRefGoogle Scholar
  855. Titov, A. A., 1971, Characteristics of sonic signaling of common dolphins (Delphinus delphis) under new conditions, Bionika, 5:62.Google Scholar
  856. Titov, A. A., 1972, Investigation of sonic activity and phenomenological characteristics of the echolocation analyzer of Black Sea delphinids. Canditorial dissertation, Karadag, as cited in: Bel’kovich, V. M. and Dubrovskiy, N. A., 1976, “Sensory Bases of Cetacean Orientation”, Nauka, Leningrad (English translation JPRS L/7157).Google Scholar
  857. Titov, A. A., 1975, Recognition of spherical targets by the bottlenose dolphin in the presence of sonic interference, in: “Marine Mammals, Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals”, G. B. Agarkov, ed., Naukova Dumka, Kiev (English translation JPRS L/6049).Google Scholar
  858. Titov, A. A., and Nikolenko, G. V., 1975, Quantitative evaluation of the sounds in three species of Black Sea dolphins, Bionika, 9:115.Google Scholar
  859. Titov, A. A., and Tomilin, A. G., 1970, Sonic activity of the common dolphin (Delphinus delphis) and harbor porpoise (Phocoena phocoena) in various situations, Bionika, 4:88.Google Scholar
  860. Titov, A. A., and Yurkevich, L. I., 1971, Physical characteristics of nonecholocation sounds of Black Sea dolphins, Bionika, 5:57.Google Scholar
  861. Titov, A. A,, and Yurkevich, L. I., 1975, Temporary pulse summation in the bottlenose dolphin, Tursiops truncatus, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  862. Titov, A. A., Tomilin, A. G., Baryshnikov, N. S., Yurkevich, L. I., and Lekomtsev, V. M., 1971, Communication-emotional signals of Black Sea dolphins, Bionika, 5:67.Google Scholar
  863. Tomilin, A. G., 1968, Factors promoting powerful development of the brain in Odontoceti, Trudy Vsesoyuznogo Sel’sko-Khozyaystvennogo Instituta Zaochnogo Obrasovaniya, 31:191 (in Russian JPRS 49777).Google Scholar
  864. Tomilin, A. G., 1969, Present status of study of the acoustical vocalizations in Cetacea, “IVoe Vsesoyuznoye Soveshchaniye po izucheniyu Morskikh Mlekopitayushchikh”, Kaliningrad.Google Scholar
  865. Tsuyuki, H., and Itoh, S., 1973, Fatty acid component of blubber oil of Amazon river dolphin, Sci. Rept. of the Whales Res. Inst., 25:293.Google Scholar
  866. Turner, R. N., and Norris, K. S., 1966, Discriminative echolocation in a porpoise, Jour. of the Exp. Anal. of Beh., 9:535.CrossRefGoogle Scholar
  867. Valiulina, F. G., 1975, The role of the mandible in conduction of sonic oscillations in man and dolphins, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  868. Varanasi, V., and Malins, D. G., 1970, Unusual wax esters from the mandibular canal of the porpoise (Tursiops gilli), Biochemistry, 9:3629.PubMedCrossRefGoogle Scholar
  869. Varansai, V., and Malins, D. G., 1970, Ester and ether-linked lipids in the mandibular canal of a porpoise (Phocoena phocoena). Occurrence of isonaleric acid in glycerolipids, Biochemistry, 9:4576.CrossRefGoogle Scholar
  870. Varanasi, V., and Malins, D. G., 1971, Unique lipids of the porpoise (Tursiops gilli): difference in triacyl glycerols and wax esters of acoustic (mandibular canal and melon) and blubber tissues, Biochem. Biophys. Acta., 231:415.PubMedCrossRefGoogle Scholar
  871. Varanasi, V., and Malins, D. G., 1972, Triacylglycerols characteristics of porpoise acoustic tissues: Molecular structure of diisolvaleroyl-glycerides, Science, 176:926.PubMedCrossRefGoogle Scholar
  872. Varanasi, V., Everitt, M., and Malins, D. G., 1973, The isomeric composition of the diisovaleroyl-glycerides: a specificity for the biosynthesis of the 1,3-Diisolvaleryl-Glycerides structures, Int. J. Biochem., 4:373.CrossRefGoogle Scholar
  873. Varanasi, V., Feldman, H. R., and Malins, D. G., 1975, Molecular basis for formation of lipid sound lens in echolocating cetaceans, Nature, 255:340.CrossRefGoogle Scholar
  874. Vel’min, V. A., 1975, Target detection by the bottlenose dolphin under artifical reverberation conditions, in: “Marine Mammals, Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals”, G. B. Agarkov, ed., Naukova Dumka Kiev, (English translation JPRS L/6049).Google Scholar
  875. Vel’min, V. A., and Dubrovskiy, N. A., 1975, On the auditory analysis of pulsed sounds by dolphins, Doklady Akad. Nauk. SSSR, 225(2):470.Google Scholar
  876. Vel’min, V. A., and Dubrovskiy, N. A., 1976, The critical interval of active hearing in dolphins, Sov. Phys. Acoust., 22(4):351, (English translation, J. S. Wood, Amer. Inst. Physics).Google Scholar
  877. Vel’min, V. A., and Titov, A. A., 1975, Auditory discrimination of interpulse intervals by bottlenose dolphin, in: “Marine Mammals, Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals”, G. B. Agarkov, Ed., Naukova Dumka, Kiev (English translation JPRS L/6049).Google Scholar
  878. Vel’min, V. A., Titov, A. A., and Yurkevich, L. I., 1975, Differential intensity thresholds for short-pulsed signals in bottlenose dolphins, in: “Morskiye Mlekopitayushchiye”, (Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev (Translation JPRS L/6049–1).Google Scholar
  879. Vel’min V. A., Titov, A. A., and Yurkevich, L. I., 1975, Temporary pulse summation in bottlenose dolphins, in: “Morskiye Mlekopitayushchiye”, (Proceedings of the Sixth All-Union Conference on the Study of Marine Mammals), G. B. Agarkov, ed., Naukova Dumka, Kiev (English Translation JPRS L/6049–1).Google Scholar
  880. Voronov, V. A., and Stosman, I. M., 1977, Frequency-threshold characteristics of subcortical elements of the auditory analyzer of the Phocoena phocoena porpoise, Zhurnal Evolyutsionnoy Biokhimii I Fiziologii, 6:719.Google Scholar
  881. Vronskiy, A. A., 1975, Some data on extraorgan innervation of dolphin pharynx, Doklady Akademii Nauk SSSR, 6:545.Google Scholar
  882. Vronskiy, A. A., and Manger, A. P., 1975, Extraorganic innervation of the larynx and pharynx of some delphinids, in: “Morskiye Mlekopitayushchiye”, G. B. Agarkov, ed., Izdatel’stvo Naukova Dumka, Kiev.Google Scholar
  883. Watkins, W. A., 1966, Listening to Cetaceans, in: “Whales, Dolphins and Porpoises”, K. S. Norris, ed., Univ. of Calif. Press, Berkeley.Google Scholar
  884. Watkins, W. A., 1967, Air-borne sounds of the humpback whale Megaptera novaengliae, Jour. Mammal, 48:573.CrossRefGoogle Scholar
  885. Watkins, W. A., 1967, The harmonic interval: fact or artifact in spectral analysis of pulse trains, in: “Marine Bio-Acoustics Vol. II”, W. N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  886. Watkins, W. A., 1968, Comments on “Spectral Analysis of the calls of the Male Killer Whale”, IEEE Transact. on Audio and Electroacoustics, 16:523.CrossRefGoogle Scholar
  887. Watkins, W. A., 1974, Computer measurement of biological sound-source locations from four hydrophone array data, Technical Report, Off. Naval Res., Washington, D.C.Google Scholar
  888. Watkins, W. A., 1974, Bandwidth limitations and analysis of cetacean sounds, with comments on “Delphinid sonar measurements and analysis”, (K. J. Diercks, R. T. Trochta and W. E. Evans, J. Acoust. Soc. Amer. 54, 200–204 (1973)), Jour. Acoust. Soc. Amer., 55:849.CrossRefGoogle Scholar
  889. Watkins, W. A., 1976, Biological sound-source location by computer analysis of underwater array data, Deep-Sea Research, 23:175.Google Scholar
  890. Watkins, W. A., 1977, Acoustic behavior of sperm whales, Oceanus, 20:50.Google Scholar
  891. Watkins, W. A., and Ray, G. C., 1977, Underwater sounds from ribbon seal, Phoca (Histriophoca) fasciata, Fishery Bulletin, 75:450.Google Scholar
  892. Watkins, W. A., and Schevill, W. E., 1968, Underwater playback of their own sounds to Leptonychotes (Weddell seals), Jour. Mammal, 49:287.CrossRefGoogle Scholar
  893. Watkins, W. A., and Schevill, W. E., 1971, Four hydrophone array for acoustic three-dimensional location, Technical Report 71–60, Woods Hole Oceanographic Inst., Massachusetts.CrossRefGoogle Scholar
  894. Watkins, W. A., and Schevill, W. E., 1971, Underwater sounds of Monodon (Narwhal), Jour. Acoust. Soc. Amer., 49(2):595.CrossRefGoogle Scholar
  895. Watkins, W. A., and Schevill, W. E., 1972, Sound source location by arrival-times on a non-rigid three-dimensional hydrophone array, Deep-Sea Research, 19:691.Google Scholar
  896. Watkins, W. A., and Schevill, W. E., 1974, Listening to Hawaiian spinner porpoises, Stenella cf. longirostris, with a three-dimensional hydrophone array, Jour. Mammal., 55:319.CrossRefGoogle Scholar
  897. Watkins, W. A., and Schevill, W. E., 1975, Sperm whales (Physeter catodon) react to pingers, Deep-Sea Research, 22:123.Google Scholar
  898. Watkins, W. A., and Schevill, W. E., 1976, Right whale feeding and baleen rattle, Jour. Mammal., 57:58.CrossRefGoogle Scholar
  899. Watkins, W. A., and Schevill, W. E., 1977, Spatial distribution of Physeter catodon (sperm whales) underwater, Deep-Sea Research, 24:693.CrossRefGoogle Scholar
  900. Watkins, W. A., and Schevill, W. E., 1977, Sperm whale codas, Jour. Acoust. Soc. Amer., 62:1485.CrossRefGoogle Scholar
  901. Watkins, W. A., Schevill, W. E., and Best, P. B., 1977, Underwater sounds of Cephalorhynchus heavisidii (Mammalia: Cetacea), Jour. Mammal., 58:316.CrossRefGoogle Scholar
  902. Watkins, W. A., Schevill, W. E., and Ray, G. C., 1971, Underwater sounds of Monodon (Narhwal), Jour. Acous. Soc. Amer., 49:595.CrossRefGoogle Scholar
  903. Wedmid, G., Litchfield, C., Ackman, R. G., and Sipos, J. C., 1971, Heterogeneity of lipid composition within the cephalic melon tissue of the pilot whale (Globicephala melaena), Jour. Amer. Oil Chenu Soc, 48:332.Google Scholar
  904. Wedmid, G., Litchfield, C. Ackman, R. G., Sipos, J. C., Eaton, C. A., and Mitchell, E. D., 1973, Heterogeneity of lipid composition within the cephalic melon tissue of the pilot whale (Globicephala melaena), Biochemica & Biophysica Acta, 326:439.CrossRefGoogle Scholar
  905. Wever, E. G., McCormick, J. G., Palin, J., and Ridgway, S. H., 1971, The cochlea of the dolphin Tursiops truncatus: general morphology, Proc. Nation. Acad. Sci., USA, 68:2381.CrossRefGoogle Scholar
  906. Wever, E. G., McCormick, J. G., Palin, J., and Ridgway, S. H., 1971, The cochlea of the dolphin Tursiops truncatus: the basilar membrane, Proc. Nation. Acad. Sci., USA, 68:2708.CrossRefGoogle Scholar
  907. Wever, E. G., McCormick, J. G., Palin, J., and Ridgway, S. H., 1971, The cochlea of the dolphin, Tursiops truncatus: hair cells and ganglion cells, Proc. Nation. Acad. Sci., USA, 68:2908.CrossRefGoogle Scholar
  908. Wever, E. G., McCormick, J. G., Palin, J., and Ridgway, S. H., 1972, Cochlear structure in the dolphin Lagenorhynchus obliquidens, Proc. Nation. Acad. Sci., USA, 69:657.CrossRefGoogle Scholar
  909. White, M. J., Ljungblad, D., Norris, J. and Baron, K., 1977, Auditory thresholds of two Beluga whales, Proceedings (abstracts) Second Conference on the Biology of Marine Mammals, San Diego, Calif.Google Scholar
  910. Whitmore, F. C., Jr., and Sanders, A. E., 1976, Review of the Oligocene Cetacea, Syst. Zool., 25(4):304.CrossRefGoogle Scholar
  911. Winn, H. E., Perkins, P. J., and Poulter, T. C., 1970, Sounds of the humpback whale, in: “Proceedings of the Seventh Annual Conference on Biological Sonar and Diving Mammals”, Stanford Research Institute, Menlo Park, Calif.Google Scholar
  912. Winn, H. E., Perkins, P. J., and Winn, L., 1970, Sounds and behaviour of the northern bottle-nosed whale, in; “Proceedings of the Seventh Annual Conference on Biological Sonar and Diving Mammals”, Menlo Park, Calif.Google Scholar
  913. Wood, F. G., 1973, “Marine Mammals and Man”, R. B. Luce, Inc., New York.Google Scholar
  914. Wood, F. G., 1978, The cetacean stranding phenomenon: An hypothesis, in: “Report on the Marine Mammal Stranding Workshop”, N. T. I. S., Washington, D.C.Google Scholar
  915. Yablokov, A. V., Bel’kovich, V. M., and Borisov, V. I., 1972, Whales and Dolphins, Parts I and II, Kity i Del’fini, Izd-vo Nauka, Moscow (English translation JPRS 62150–1).Google Scholar
  916. Yanagisawa, K., Sato, O., Nomoto, M., Katsuki, Y., Ikeono, E., Grinnel, A. D., and Bullock, T. H., 1966, Auditory evoked potentials from brain stem in cetaceans, Fed. Proc. 25:464.Google Scholar
  917. Yunker, M. P., and Herman, L. M., 1974, Discrimination of auditory temporal differences by the bottlenose dolphin and by the human, Jour. Acous. Soc. Amer., 56:1870.CrossRefGoogle Scholar
  918. Zaslavskiy, G. L., 1971, On directivity of sound emission in the Black Sea bottlenosed dolphin, Trudy Akusticheskogo Instituta, 17:60.Google Scholar
  919. Zaslavskiy, G. L., 1972, Study of echolocation signals of bottle-nose dolphin (Tursiops truncatus) two channel system of registration, Biofizika, 17:717.Google Scholar
  920. Zaslavskiy, G. L., 1974, Experimental study of time and space structure of the dolphin’s echolocating signals, candidatorial dissertation, Karadag, as cited in: Bel’kovich, V. M. and Dubrovskiy, N. A., 1976, “Sensory Bases of Cetacean Orientation”, Nauka, Leningrad (English translation JPRS L/7157).Google Scholar
  921. Zaslavskiy, G. L., Titov, A. A., and Lekomtsev, V. M., 1969, Investigation of hydrolocation capabilities of the Azov dolphin (Phocoena phocoena), Trudy Akusticheskogo Instituta, 8:134.Google Scholar
  922. Zaytseva, K. A., Akopian, A. I., and Morozov, V. P., 1975, Noise resistance of the dolphin auditory analyzer as a function of noise direction, Biofizika, 20(3):519.Google Scholar
  923. Zlatoustova, L. V., and Nizova, A. B., 1971, An acoustical analysis of some whistles of the bottlenose dolphin (Tursiops truncatus Montagu), “Morfologiya i Ekologiya Morskikh Mlekopitayushchikh”, V. Ye. Sokolov, ed., Izdatel’stvo Nauka, Moscow.Google Scholar

Bibliography on echolocation in non-bat, non-cetacean species

  1. 1.
    Buchler, E. R. The use of echolocation by the wandering shrew Sorex vagrans. Anim. Behav., 24, 858–873, 1976.CrossRefGoogle Scholar
  2. 2.
    Cranbrook, E. and Medway, L. Lack of ultrasonic frequencies in the calls of swiftlets. Anim. Behav., 107, 258. 1965.Google Scholar
  3. 3.
    Eisenberg, J. F. and Gould, E. The behavior of Solenodon paradoxus in captivity with comments on the behavior of other insectivora. Zool. 51, 49, 1966.Google Scholar
  4. 4.
    Eisenberg, J. F. and Gould, E. The tenrecs: a study in mammalian behavior and evolution. Smithsonian Contributions to Zoology No. 27, 138 p.Google Scholar
  5. 5.
    Fenton, M. B. The role of echolocation in the evolution of bats. Am. Nat., 108, 386–388. 1974.CrossRefGoogle Scholar
  6. 6.
    Fenton, M. B. Acuity of echolocation in Collocalia hirundinacea (Aves: Apodidae), with comments on the distribution of echolocating swiftlets and molossid bats. Biotropica, 7, 1–7. 1975.CrossRefGoogle Scholar
  7. 7.
    Gans, C. and Maderson, P. F. A. Sound producing mechanisms in recent reptiles: review and comment. Amer. Zool., 13, 1195–1203. 1973.Google Scholar
  8. 8.
    Gehlback, F. R. and Walker, B. Acoustic behavior of the aquatic salamander, Siren intermedia. BioScience, 20, 1107–1108. 1970.CrossRefGoogle Scholar
  9. 9.
    Griffin, D. R. and Suthers, R. A. Sensitivity of echolocation in cave swiftlets. Biol. Bull., 139, 495–501. 1970.PubMedCrossRefGoogle Scholar
  10. 10.
    Griffin, D. R. and Buchler, E. Echolocation of extended surfaces. In: “Animal migration, navigation and homing.” Ed. by K. Schmidt-Koenig, New York, Springer-Verlag, 1978. p. 201–08.Google Scholar
  11. 11.
    Grunwald, A. Untersuchungen zur orientiergun der weisszahnspitzmaus (Soricidae-Crocidurinae). Z. vergl. Physiol., 65, 191–217. 1969.CrossRefGoogle Scholar
  12. 12.
    Harrisson, T. Onset of echolocation clicking in Collocalia swiftlets. Nature, 212, 530–531, 1966.CrossRefGoogle Scholar
  13. 13.
    Holyoak, D. T. Undescribed land birds from the Cook Islands, Pacific Ocean. Bull. Br. Ornith. Club, 94, 145–150. 1974.Google Scholar
  14. 14.
    Hutterer, V. R. Beobachtungen zur geburt and Jugendentwicklung der zwergspitzmaus, Sorex minutus L. (Soricidae — Insectivora). Z. Saugetierkunde, 41, 1–22. 1976.Google Scholar
  15. 15.
    Ilichev, V. D. Certain problems in studying the orientation of birds. U. S. Gov. Res. Dev. Rep. 70, 173. 1970.Google Scholar
  16. 16.
    Lore, R., Kam, B. and Newby, V. Visual and nonvisual depth avoidance in young and adult rats. J. Comp. and Physiol. Psychol., 65, 525–528. 1967.CrossRefGoogle Scholar
  17. 17.
    Komarov, V. T. Underwater sounds of the muskrat, Ondatra zibethica and the water vole Arvicola terrestris. Zool. Zh., 55, 632–633. 1976.Google Scholar
  18. 18.
    Konishi, M. and Knudsen, E. I. The oilbird: hearing and echolocation. Sci. 204, 425–427. 1979.CrossRefGoogle Scholar
  19. 19.
    Konstantinov, A.I., Akhmarova, N.I. and Golovina, S.S. The possibility of small rodents using ultrasonic location. In: “Echolocation in animals.” Ed. by E. Sh. Airapetyants, A. I. Konstantinov, Springfield, Virginia, U.S. Department of Commerce, National Tech. Info. Serv., 1966. 390 pp.Google Scholar
  20. 20.
    Medway, L. The swiftlets (Collocalia) of Java, and their relationships. J. Bombay Nat. Hist. Soc, 59, 146–153. 1962.Google Scholar
  21. 21.
    Medway, L. Field characters as a guide to the specific relations of swiftlets. Proc. Linn. Soc. Lond., 177, 151–172. 1966.CrossRefGoogle Scholar
  22. 22.
    Medway, L. The function of echonavigation among swiftlets. Anim. Behav., 15, 416–420. 1967.PubMedCrossRefGoogle Scholar
  23. 23.
    Medway, L. Studies on the biology of the edible nest swiftlets of southeast Asia. Malay, Nat. J., 22, 57–63. 1969.Google Scholar
  24. 24.
    Medway, L. The nest of Collocalia v. vanikorensis, and taxonomic implications. Emu, 75, 154–155. 1975.CrossRefGoogle Scholar
  25. 25.
    Medway, L. and Wells, D. R. Dark orientation by the giant swiftlet Collocalia gigas. Ibis, III, 609–11. 1969.Google Scholar
  26. 26.
    Medway, L. The Birds of Malay Peninsula, Vol. 5, London, Witherby. 1976.Google Scholar
  27. 27.
    Medway, L. and Pye, J. D. Echolocation and the systematics of swiftlets. In: “Evolutionary ecology.” Ed. by B. Stonehouse and C. Perrins, Baltimore, Maryland, University Park Press, 1977. p. 225–238.Google Scholar
  28. 28.
    Pecotich, L. Grey swiftlets in the Tully River gorge and Chillagoe Caves. Sunbird, 5, 16–21. 1974.Google Scholar
  29. 29.
    Penny, M. The birds of Seychelles and the outlying islands. London, Collins. 1976.Google Scholar
  30. 30.
    Pernetta, J. C. Anatomical and behavioral specializations of shrews in relation to their diet. Can. J. Zool. 55, 1442–1453. 1977.PubMedCrossRefGoogle Scholar
  31. 31.
    Player, J. In search of Guianas oilbirds. Animals, 15, 74–79. 1973.Google Scholar
  32. 32.
    Sato, Y. Visual sense organs of soricoidea. Zool. Mag., 81, 419. 1972.Google Scholar
  33. 33.
    Schwartzkopff, J. Auditory communication in lower animals role of auditory physiology. In: “Annual review of psychology”, Vol. 28. Ed. by M. R. Rosenzweig and L. W. Porter, Palo Alto, California, Annual Reviews, Inc., 1977. p. 61–84.Google Scholar
  34. 34.
    Sergeev, V. E. Characteristics of the orientation of shrews in water. Ekologiya, 4, 87–90. 1973.Google Scholar
  35. 35.
    Simmons, J. A. Echolocation for perception of the environment. J. Acoust. Soc. Am., 58, S18. 1975.CrossRefGoogle Scholar
  36. 36.
    Smythies, B. E. A note on the swiftlets Collocalia found in Burma. J. Bombay Nat. Hist. Soc, 72, 847–851. 1975.Google Scholar
  37. 37.
    Snow, D. W. Oilbirds, cave-living birds of South America. Stud. Speleol. 2, 257–264. 1975.Google Scholar
  38. 38.
    Tavolga, W. N. Acoustic obstacle detection in the sea catfish (Arius felis). In: “Sound reception in fish.” Ed. by A. Schuijf and A. D. Hawkins, Amsterdam, Elsevier Scientific Publ. Co., 1976. p. 185–203.Google Scholar
  39. 39.
    Tavolga, W. N. Acoustic orientation in the sea catfish, Galeichthys felis. In: “Orientation: sensory basis.” Ed. by H. Adler, Ann. N.Y. Acad. Sci., 188, 80–97, 1971.Google Scholar
  40. 40.
    Tavolga, W. N. Mechanisms for directional hearing in the sea catfish (Arius felis). J. Exp. Biol. 67, 97–115. 1977.PubMedGoogle Scholar
  41. 41.
    Thurow, G. R. and Gould, H. J. Sound production in a caecilian. Herpetologica, 33, 234–237. 1977.Google Scholar
  42. 42.
    Vaughan, T. A. Mammalogy. Philadelphia, W. B. Saunders Co., 1972. 463 pp.Google Scholar
  43. 43.
    Vogel, P. Comparative investigations of the mode of ontogenesis of domestic Soricidae Crocidura russula, Sorex araneus and Neomys fodiens. Rev. Suisse Zool. 79, 1201–1332. 1972.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • René-Guy Busnel
    • 1
  • James F. Fish
    • 2
  1. 1.Ecole Pratique des Hautes EtudesJouy-en-JosasFrance
  2. 2.Sonatech, Inc.GoletaUSA

Personalised recommendations