Advertisement

Energy Spectrum Analysis in Echolocation

  • Richard A. Johnson
Part of the NATO Advanced Study Institutes Series book series (volume 28)

Abstract

There are many approaches to the problem of understanding echolocation. Classically, observation and behavioral experimentation have been used to define echolocating animals’ abilities, while more recently emphasis has shifted to neurophysiological investigations, particularly with certain bat species. However, details of the acoustic processing mechanisms involved remain obscure, although inferences can be made concerning the efficiency of extracting information from echoes.

Keywords

Interference Pattern Filter Bank Pulse Pair Ambiguity Function Energy Spectrum Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altes, R. A., and Reese, W. D., 1975, Doppler-tolerant classification of distributed targets— a bionic sonar, IEEE Trans. on Aerospace and Electronic Systems, AES-11:708.CrossRefGoogle Scholar
  2. Altes, R. A., and Titlebaum, E. L., 1970, Bat signals as optimally Doppler tolerant waveforms, J. Acoust. Soc. Amer., 48:1014.CrossRefGoogle Scholar
  3. Bilsen, F. A., and Ritsma, R. J., 1969, Repetition pitch and its implication for hearing theory, Acustica, 22:63.Google Scholar
  4. Chestnut, P., and Landsman, H., 1977, Sonar target recognition experiment, ESL Inc., ReportN0 ESL-ER178 (Address: 495 Java Dr., Sunnyvale, Ca.)Google Scholar
  5. Henson, O. W., Jr., 1970, The ear and audition, in: “Biology of Bats”, W. A. Wimsatt, ed., Academic Press, New York.Google Scholar
  6. Johnson, R. A., 1972, “Energy Spectrum Analysis as a Processing Mechanism for Echolocation”, Ph. D. Diss., University of Rochester, New York.Google Scholar
  7. Johnson, R. A., 1977, Time difference pitch resolution in humans and animal echolocation capabilities, J. Acoust. Soc. Amer., 62 (Suppl)(Abstract).Google Scholar
  8. Johnson, R. A., and Titlebaum, E. L., 1972, Range-Doppler uncoupling in the Doppler tolerant bat signal, in “Proceedings of the 1972 IEEE Ultrasonics Symposium”.Google Scholar
  9. Johnson, R. A., and Titlebaum, E. L., 1976, Energy spectrum analysis a model of echolocation processing, J. Acoust. Soc. Amer., 60:484.CrossRefGoogle Scholar
  10. Kay, L., 1967, Discussion to: Neural processing involved in sonar, in: “Animal Sonar Systems: Biology and Bionics”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas, France.Google Scholar
  11. Murchison, A. E., 1979, Detection range and range resolution of echolocating bottlenosed porpoise (Tursiops truncatus), this volume.Google Scholar
  12. Nordmark, J., 1960, Perception of distance in animal echolocation, Nature, 183:1009.CrossRefGoogle Scholar
  13. Pollak, G., and Henson, O. W., Jr., 1972, Cochlear microphonic audiograms in the “pure tone” bat, Chilonycteris parnellii parnellii, Science, 176:66.PubMedCrossRefGoogle Scholar
  14. Pollak, G., and Henson, O. W., Jr., 1973, Specialized function aspects of the middle ear muscles in the bat, Chilonycteris parnellii, J. Comp. Physiol., 84:167.CrossRefGoogle Scholar
  15. Pye, J. D., 1967, Discussion to: Theories of sonar systems in relation to biological organisms, in: “Animal Sonar Systems: Biology and Bionics”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas, France.Google Scholar
  16. Ritsma, R. J., 1967, Frequencies dominant in the perception of the pitch of complex sounds, J. Acoust. Soc. Amer., 42:191.CrossRefGoogle Scholar
  17. Simmons, J. A., 1970, Distance perception by echolocation: the nature of signal processing in the bat, Bydragen tot de Dierkunde, 40:87.Google Scholar
  18. Simmons, J. A., 1971a, Echolocation in bats: signal processing of echoes for target range, Science, 171:925.PubMedCrossRefGoogle Scholar
  19. Simmons, J. A., 1971b, The sonar receiver of the bat, Annals of the New York Acad. of Sciences, 188:161.CrossRefGoogle Scholar
  20. Simmons, J. A., 1973, The resolution of target range by echolocating bats, J. Acoust. Soc. Amer., 54:157.CrossRefGoogle Scholar
  21. Simmons, J. A., Howell, D. J., and Suga, N., 1975, Information content of bat sonar echoes, Am. Scientist, 63:204.PubMedGoogle Scholar
  22. Thompson, R. K., and Herman, L. M., 1975, Underwater frequency discrimination in the bottlenosed dolphin (1–140 kHz) and the human (1–8 kHz), J. Acoust. Soc. Amer., 57:943.CrossRefGoogle Scholar
  23. Wightman, F. L., 1973, The pattern-transformation model of pitch, J. Acoust. Soc. Amer., 54:407.CrossRefGoogle Scholar
  24. Wilson, J. P., 1967, Psychoacoustics of obstacle detection using ambient or self-generated noise, in: “Animal Sonar Systems: Biology and Bionics”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas, France.Google Scholar
  25. Yost, W. A., Hill, R., and Perez-Falcon, T., 1978, Pitch and pitch discrimination of broadband signals with rippled power spectra, J. Acoust. Soc. Amer., 63:1166.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard A. Johnson
    • 1
  1. 1.Naval Ocean Systems CenterSan DiegoUSA

Personalised recommendations