Models for Echolocation

  • Richard A. Altes
Part of the NATO Advanced Study Institutes Series book series (volume 28)


Mathematical or engineering models of biological systems are viewed with extreme skepticism (if not with hostility) by some experimental biologists. A discussion about models should take account of this attitude, since the work may otherwise be doomed to obscurity, even if the results are correct.


Matched Filter Coincidence Counter Direction Hypothesis Envelope Detector Orthogonal Basis Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackroyd, M. H., 1971, Short-time spectra and time-frequency energy distributions, J. Acoust. Soc. Amer., 50:1229.CrossRefGoogle Scholar
  2. Ahmed, N., and Rao, K. R., 1975, “Orthogonal Transforms for Digital Signal Processing”, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. Altes, R. A., 1971a, Methods of wideband signal design for radar and sonar systems, Fed. Clearinghouse N° AD 732–494.Google Scholar
  4. Altes, R. A., 1971b, Suppression of radar clutter and multipath effects for wideband signals, IEEE Trans. on Inform. Theory, IT-17:344.CrossRefGoogle Scholar
  5. Altes, R. A., 1976a, Bionic image analysis using lines and edges, Math. Biosciences, 31:317.CrossRefGoogle Scholar
  6. Altes, R. A., 1976b, Sonar for generalized target description and its similarity to animal echolocation systems, J. Acoust. Soc. Amer., 59:97.CrossRefGoogle Scholar
  7. Altes, R. A., 1977, Estimation of sonar target transfer functions in the presence of clutter and noise, J. Acoust. Soc. Amer., 61:1371.CrossRefGoogle Scholar
  8. Altes, R. A., 1978a, Angle estimation and binaural processing in animal echolocation, J. Acoust. Soc. Amer., 63:155.CrossRefGoogle Scholar
  9. Altes, R. A., 1978b, “Further Development and New Concepts for Bionic Sonar. Vol. 2. Spectrogram Correlation”, Report OC-R-78-A004–1, ORINCON Corporation, 3366 N. Torrey Pines Ct., La Jolla, Ca., Reprinted as NOSC TR-404, Naval Ocean Systems Center, San Diego, Ca.Google Scholar
  10. Altes, R. A., 1978c, “Further Development and New Concepts for Bionic Sonar. Vol. 3. New Concepts and Experiments”, see 1978b.Google Scholar
  11. Altes, R. A., 1978d, Possible reconstruction of auditory signals by the central nervous system, J. Acoust. Soc. Amer., 64, Supp. 1, S137.CrossRefGoogle Scholar
  12. Altes, R. A., 1979a, Target position estimation in radar and sonar, and generalized ambiguity analysis for maximum likelihood parameter estimation, Proc. IEEE, 67.Google Scholar
  13. Altes, R. A., 1979b, Utilization of spectrograms for detection and estimation, with applications to theories of hearing and animal echolocation. Part I. Spectrogram processing, submitted for publication to J. Acoust. Soc. Amer.Google Scholar
  14. Altes, R. A., and Anderson, G. M., Binaural estimation of cross-range velocity and optimum escape maneuvers by moths, this volume.Google Scholar
  15. Altes, R. A., and Faust, J. W., 1978, “Further Development and New Concepts for Bionic Sonar. Vol. 1. Software Processors”, see Altes, 1978b.Google Scholar
  16. Altes, R. A., and Reese, W. D., 1975, Doppler-tolerant classification of distributed targets—a bionic sonar, IEEE Trans. on Aerospace and Electronic Systems, AES-11:708.CrossRefGoogle Scholar
  17. Altes, R. A., and Skinner, D. P., 1977, Sonar velocity resolution with a linear-period-modulated pulse, J. Acoust. Soc. Amer., 61:1019.CrossRefGoogle Scholar
  18. Altes, R. A., and Titlebaum, E. L., 1970, Bat signals as optimally Doppler tolerant waveforms, J. Acoust. Soc. Amer., 48:1014.CrossRefGoogle Scholar
  19. Altes, R. A., and Titlebaum, E. L., 1975, Graphical derivations of radar, sonar, and communication signals, IEEE Trans. on Aerospace and Electronic Systems, AES-11:38.CrossRefGoogle Scholar
  20. Anderson, D. J., Rose, J. E., Hind, J. E., and Brugge, J. F., 1971, Temporal position of discharges in single auditory nerve fibers within the cycle of a sine wave stimulus: frequency and intensity effects, J. Acoust. Soc. Amer., 49:1131.CrossRefGoogle Scholar
  21. Bangs, W. J., and Schultheiss, P. M., 1973, Space-time processing for optimal parameter estimation, in: “Signal Processing”, Griffiths, stocklin, and Van Schooneveld, eds., Academic Press, London.Google Scholar
  22. Bechtel, M. E., 1976, Short pulse target characteristics, in: “Atmospheric Effects on Radar Target Identification and Imaging”, H. E. G. Jeske, ed., Reidel, Dordrect.Google Scholar
  23. Bechtel, M. E., and Ross, R; A., 1966, Radar scattering analysis, CAL report N° ER/RIS-10, Cornell Aeronautical Laboratory, Buffalo, N.Y.Google Scholar
  24. Bello, P.A., 1963, Characterization of randomly time-variant linear channels, IEEE Trans, on Comm. Sys., CS-11:360CrossRefGoogle Scholar
  25. Bel’kovich, V. M., and Dubrovskiy, N. A., 1976, “Sensory Bases of Cetacean Orientation”, Chapter V. Echolocation, JPRS, L/7157.Google Scholar
  26. de Boer, E., 1975, Synthetic whole-nerve action potentials for the cat, J. Acoust. Soc. Amer., 58:1030.CrossRefGoogle Scholar
  27. Brennan, L. E., and Reed, I. S., 1973, Theory of adaptive radar, IEEE Trans. Aerosp. and Electronic Systems, AES-9:237.CrossRefGoogle Scholar
  28. Bullock, T. H., Grinnell, A. D., Ikezono, E., Kamseda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., Yanagisawa, K., 1968, Electrophysiological studies of central auditory mechanisms in cetaceans, Zeitschrift für Vergleichende Physiologie, 59: 117.Google Scholar
  29. Cahlander, D. A., 1966, Echolocation with wideband waveforms: bat sonar signals, Fed. Clearinghouse N° AD 605–322.Google Scholar
  30. Capon, J., 1961, On the asymptotic efficiency of locally optimum detectors, IRE Trans. Inform. Theory, IT-7:67.CrossRefGoogle Scholar
  31. Chien, Y. T., and Fu, K. S., 1968, Selection and ordering of feature observations in a pattern recognition system, Inform. and Control, 12:395.CrossRefGoogle Scholar
  32. Colburn, H. S., 1973, Theory of binaural interaction based on auditory nerve data. I. General strategy and preliminary results on interaural discrimination, J. Acoust. Soc. Amer., 54:1458.CrossRefGoogle Scholar
  33. Colburn, H. S., 1977, Theory of binaural interaction based on auditory nerve data. II. Detection of tones in noise, J. Acoust. Soc. Amer., 61:525.CrossRefGoogle Scholar
  34. Colburn, H. S., and Latimer, J. S., 1978, Theory of binaural interaction based on auditory nerve data. III. Joint dependence on interaural time and amplitude differences, J. Acoust. Soc. Amer., 64:95.CrossRefGoogle Scholar
  35. Cook, C. E., and Bernfeld, M., 1967, “Radar Signals”, Academic Press, New York.Google Scholar
  36. Davenport, W. B., and Root, W. L., 1958, “Random Signals and Noise”, McGraw-Hill, New York.Google Scholar
  37. Davis, R. C., Brennan, L. E., and Reed, I. S., 1976, Angle estimation with adaptive arrays in external noise fields, IEEE Trans. on Aerospace and Electronic Systems, AES-12:179.CrossRefGoogle Scholar
  38. Decouvelaere, M., 1979, Signal design for matched filter detection in a reverberation-limited environment: application to cetacean echolocation signals, this volume.Google Scholar
  39. De Long, D. F., and Hofstetter, E. M., 1969, The design of clutter-resistant radar waveforms with limited dynamic range, IEEE Trans, on Inform. Theory, IT-15:376.Google Scholar
  40. Dirac, P. A. M., 1963, The evolution of the physicist’s picture of nature, Scientific American, 208, N° 5:45.CrossRefGoogle Scholar
  41. Durlach, N. I., 1963, Equalization and cancellation theory of binaural masking-level differences, J. Acoust., Soc. Amer., 35:1206.Google Scholar
  42. Dziedzic, A., and Alcuri, G., 1977, Reconnaissance acoustique des formes et caracteristiques des signaux sonars chez Tursiops truncatus, C. R. Acad. Sc. Paris, 285 D: 981.Google Scholar
  43. Evans, E. F., 1977, Peripheral processing of complex sounds, in: “Recognition of Complex Acoustic Signals”, T. H. Bullock, ed., Abakon Verlagsgesellschaft, Berlin.Google Scholar
  44. Evans, W. E., 1973, Echolocation by marine dolphinids and one species of fresh-water dolphin, J. Acoust. Soc. Amer., 54:191.CrossRefGoogle Scholar
  45. Feinman, R., 1974, Structure of the proton, Science, 183:601.CrossRefGoogle Scholar
  46. Freedman, A., 1962, A mechanism of acoustic echo formation, Acustica, 12:10.Google Scholar
  47. Frost, O. L., 1972, An algorithm for linearly constrained adaptive array processing, Proc. IEEE, 60:926.CrossRefGoogle Scholar
  48. Glaser, E. M., 1961, Signal detection by adaptive filters, IRE Trans. on Inform. Theory, IT-10:87.Google Scholar
  49. Green, D. M., 1958, Detection of multiple component signals in noise, J. Acoust. Soc. Amer., 30:904.CrossRefGoogle Scholar
  50. Green, D. M., McKey, M. J., and Licklider, J. C. R., 1959, Detection of a pulsed sinusoid in noise as a function of frequency, J. Acoust. Soc. Amer., 31:1446.CrossRefGoogle Scholar
  51. Green, D. M., and Swets, J. A., 1966, “Signal Detection Theory and Psychophysics, Wiley”, New York.Google Scholar
  52. Green, D. M., and Yost, W. A., 1975, Binaural analysis, in: “Handbook of Sensory Physiology”,Vol. 5, Part 2, Springer-Verlag, Berlin.Google Scholar
  53. Greville, T. N. E., 1969, “Theory and Applications of Spline Functions”, Academic Press, New York.Google Scholar
  54. Griffin, D. R., 1958, “Listening in the Dark”, Yale University Press, New Haven, Conn.Google Scholar
  55. Griffin, D. R., 1971, The importance of atmospheric attenuation for the echolocation of bats (Chiroptera), Anim. Behav., 19:55.PubMedCrossRefGoogle Scholar
  56. Griffiths, L. J., 1969, A simple adaptive algorithm for real-time processing in antenna arrays, Proc. IEEE, 57:1696.CrossRefGoogle Scholar
  57. Hahn, W. R., and Tretter, S. A., 1973, Optimum processing for delay-vector estimation in passive signal arrays, IEEE Trans. Inform. Theory, IT-19:608.CrossRefGoogle Scholar
  58. Hahn, W. R., 1975, Optimum signal processing for passive sonar range and bearing estimation, J. Acoust. Soc. Amer., 58:201.CrossRefGoogle Scholar
  59. Harger, R. O., 1970, “Synthetic Aperture Radar Systems”, Academic Press, New York.Google Scholar
  60. Hauske, G., Wolf, W., and Lupp, U., 1976, Matched filters in human vision, Biol. Cybernetics, 22:181.CrossRefGoogle Scholar
  61. Hodgkiss, W. S., 1978, Detection of LPM signals with estimation of their velocity and time of arrival, J. Acoust. Soc. Amer., 64:177.CrossRefGoogle Scholar
  62. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol., 195: 215.PubMedGoogle Scholar
  63. Jeffress, L. A., 1948, A place theory of sound localization, J. Comp. Physiol. Psychol., 41:35.PubMedCrossRefGoogle Scholar
  64. Johnson, C. S., 1968a, Relation between absolute threshold and duration-of-tone pulses in the bottlenosed porpoise, J. Acoust. Soc. Amer., 43:757.CrossRefGoogle Scholar
  65. Johnson, C. S., 1968b, Masked tonal thresholds in the bottlenosed porpoise, J. Acoust. Soc. Amer., 44:965.CrossRefGoogle Scholar
  66. Johnson, R. A., 1972, “Energy spectrum analysis as a processing mechanism for echolocation”, Ph. D. Diss., University of Rochester, New York.Google Scholar
  67. Johnson, R. A., and Titlebaum, E. L., 1976, Energy spectrum analysis: a model of echolocation processing, J. Acoust. Soc., Amer., 60:484.CrossRefGoogle Scholar
  68. Kassam, S. A., and Thomas, J. B., 1976, Dead-zone limiters: an application of conditional tests in nonparametric detection, J. Acoust. Soc. Amer., 60:857.CrossRefGoogle Scholar
  69. Kassam, S. A., and Thomas, J. B., 1977, Improved nonparametric coincidence detectors, J. Franklin Inst., 303:75.CrossRefGoogle Scholar
  70. Knudsen, E. E., and Konishi, M., 1978, Space and frequency are represented separately in the auditory midbrain of the owl, J. Neurophysiol., 41:870.PubMedGoogle Scholar
  71. Koestler, A., 1964, “The Act of Creation”, Dell, New York.Google Scholar
  72. Kotelenko, L. M., and Radionova, E. A., 1975, On the phase sensitivity of neurons in the cat’s auditory system, J. Acoust. Soc. Amer., 57:979.CrossRefGoogle Scholar
  73. Kouyoumjian, R. G., 1965, Asymptotic high-frequency methods, Proc. IEEE, 53:864.CrossRefGoogle Scholar
  74. Kroszczynski, J. J., 1969, Pulse compression by means of linear-period modulation, Proc. IEEE, 57:1260.CrossRefGoogle Scholar
  75. Lee, S. D., and Uhran, J. J., 1973, Optimum signal and filter design in underwater acoustic echo ranging systems, IEEE Trans. on Aerospace and Electronic Systems, AES-9:701.CrossRefGoogle Scholar
  76. Licklider, J. C. R., 1959, Three auditory theories, in: “Psychology: A Study of a Science”, S. Koch, ed., McGraw-Hill, New York.Google Scholar
  77. Livshits, M. S., 1974, Some properties of the dolphin hydrolocator from the viewpoint of a correlation hypothesis, Biofizika, 19:916, JPRS 64329.Google Scholar
  78. Makhoul, J., 1975, Linear prediction: a tutorial review, Proc. IEEE, 63:561.CrossRefGoogle Scholar
  79. Menabe, T., Suga, N., and Ostwald, J., 1978, Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat, Science, 200:339.CrossRefGoogle Scholar
  80. Middleton, D., 1966, Canonically optimum threshold detection, IEEE Trans. on Inform. Theory, IT-12:230.CrossRefGoogle Scholar
  81. Miller, E. K., Deadrick, F. J., Hudson, H. G., Poggio, A. J., and Landt, J. A., 1975, Radar target classification using temporal mode analysis, report UCRL-51825, Lawrence Livermore Laboratory, University of California, Livermore Ca.Google Scholar
  82. Nilsson, H. G., 1978, A comparison of models for sharpening of the frequency selectivity in the cochlea, Biol. Cybernetics, 28: 177.CrossRefGoogle Scholar
  83. Nolte, L. W., and Kodgkiss, W. S., 1975, Directivity or adaptivity?, EASCON ’75, (35-A)-(35-H).Google Scholar
  84. Patterson, J. H., and Green, D. M., 1970, Discrimination of transient signals having identical energy spectra, J. Acoust. Soc. Amer., 48:894.CrossRefGoogle Scholar
  85. Picinbono, B., 1978, Adaptive signal processing for detection and communication, in: “Communication Systems and Random Process Theory”, Skwirzynski, ed., Sijthoff and Hoordhoff, Alphen aan den Rijn.Google Scholar
  86. Reed, I. S., Mallett, J. D., and Brennan, L. E., 1974, Rapid convergence rate in adaptive arrays, IEEE Trans. on Aerospace and Electronic Systems, AES-10:853.CrossRefGoogle Scholar
  87. Rihaczek, A. W., 1968, Signal energy distribution in time and frequency, IEEE Trans. on Inform. Theory, IT-14:369.CrossRefGoogle Scholar
  88. Rihaczek, A. W., 1969, “Principles of High-Resolution Radar”, McGraw-Hill, New York.Google Scholar
  89. Roberts, R. A., 1965, On the detection of a signal known except for phase, IEEE Trans. Inform. Theory, IT-11:76.CrossRefGoogle Scholar
  90. Roeder, K. D., 1970, Episodes in insect brains, Amer. Scientist, 58:378.Google Scholar
  91. Rummler, W. D., 1966, Clutter suppresssion by complex weighting of coherent pulse trains, IEEE Trans. on Aerospace and Electronic Systems, AES-2;689.CrossRefGoogle Scholar
  92. Russell, B., 1927, “An Outline of Philosophy”, Allen and Unwin, London.Google Scholar
  93. Sagan, C., 1977, “The Dragons of Eden”, Ballantine Books, New York.Google Scholar
  94. Sayers, B., McA., and Cherry, E. C., 1957, Mechanism of binaural fusion in the hearing of speech, J. Acoust. Soc. Amer., 29: 973.CrossRefGoogle Scholar
  95. Scharf, L. L., and Nolte, L. W., 1977, Likelihood ratios for sequential hypothesis testing on Markov sequences, IEEE Trans. on Inform. Theory, IT-23:101.CrossRefGoogle Scholar
  96. Schnitzler, H.-U., 1973, Control of Doppler shift compensation in the greater horseshoe bat Rhinolophus ferrumequinum, J. Comp. Physiol., 82:79.CrossRefGoogle Scholar
  97. Siebert, W. M., 1968, Stimulus transformations in the peripheral auditory system, in: “Recognizing Patterns”, Kolers and Eden, eds., MIT Press, Cambridge, Mass.Google Scholar
  98. Siebert, W. M., 1970, Frequency discrimination in the auditory system: place or periodicity mechanisms?, Proc. IEEE, 58:723.CrossRefGoogle Scholar
  99. Simmons, J. A., 1979a, Perception of echo phase information in bat sonar, in press.Google Scholar
  100. Simmons, J. A., 1979b, Processing of sonar echoes by bats, this volume.Google Scholar
  101. Skinner, D. P., Altes, R. A., and Jones, J. D., 1977, Broadband target classification using a bionic sonar, J. Acoust. Soc. Amer., 62:1239.CrossRefGoogle Scholar
  102. Sparks, D. W., 1976, Temporal recognition masking—or interference?, J. Acoust. Soc. Amer., 60:1347.CrossRefGoogle Scholar
  103. Spilker, J. J., and Magill, D. T., 1961, The delay-lock discriminator—an optimum tracking device, Proc. IRE, 49:1403.CrossRefGoogle Scholar
  104. Stern, R. M., and Colburn, H. S., 1978, Theory of binaural interaction based on auditory nerve data. IV. A model for subjective lateral position, J. Acoust. Soc. Amer., 64:127.CrossRefGoogle Scholar
  105. Stutt, C. A., and Spafford, L. J., 1968, A “best” mismatched filter response for radar clutter discrimination, IEEE Trans. on Inform. Theory, IT-14:280.CrossRefGoogle Scholar
  106. Suga, N., 1972, Analysis of information-bearing elements in complex sounds by auditory neurons of bats, Audiology, 11:58.PubMedCrossRefGoogle Scholar
  107. Turin, G. L., 1957, On the estimation in the presence of noise of the impulse response of a random, linear filter, IRE Trans. on Inform. Theory, IT-3:5.Google Scholar
  108. Van Trees, H. L., 1968, “Detection, Estimation, and Modulation Theory, Part I”, Wiley, New York.Google Scholar
  109. Van Trees, H. L., 1971, “Detection, Estimation, and Modulation Theory, Part III”, Wiley, New York.Google Scholar
  110. Vakman, D. E., 1968, “Sophisticated Signals and the Uncertainty Principle in Radar”, Springer-Verlag, New York.CrossRefGoogle Scholar
  111. Vel’min, V. A., and Dubrovskiy, N. A., 1976, The critical interval of active hearing in dolphins, Soc. Phys. Acoust., 22:351.Google Scholar
  112. Vel’min, V. A., Titov, A. A., and Yurkevich, L. I., 1975, Temporal pulse summation in bottlenosed dolphins, in: “Kiev Morskiye Mlekopitayushchiye”, Agarkov, ed.Google Scholar
  113. Widrow, B., 1962, Generalization and information storage in networks of adaline “neurons”, in.: “Self-Organizing Systems— 1962”, Yovits, Jacobi, and Goldstein, eds., Spartan Books, Washington, D. C.Google Scholar
  114. Widrow, B., Mantey, P. G., Griffiths, L. J., and Goode, B. B., 1967, Adaptive antenna systems, Proc. IEEE, 55:2143.CrossRefGoogle Scholar
  115. Wolff, S. S., Thomas, J. B., and Williams, T. R., 1962, The polarity-coincidence correlator: a non-parametric detection device, IRE Trans. on Inform. Theory, IT-8:5.Google Scholar
  116. Woodward, P. M., 1964, “Probability and Information Theory, With Applications to Radar”, Pergamon Press, Oxford.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard A. Altes
    • 1
  1. 1.ORINCON CorporationLa JollaUSA

Personalised recommendations