Advertisement

Organizational and Encoding Features of Single Neurons in the Inferior Colliculus of Bats

  • George D. Pollak
Part of the NATO Advanced Study Institutes Series book series (volume 28)

Abstract

The past five years have witnessed a remarkable increase in the number of studies concerned with the neural basis of echoloca-tion. These studies have dealt with features of the peripheral auditory system (Bruns 1976a,b; Henson 1978; Pollak et al. 1979; Schnitzler et al. 1976; Suga et al. 1975), the lower central parts of the auditory pathway, such as the cochlear nucleus (Neuweiler and Vater 1977) and superior olivary complex (Jen 1978), as well as with higher regions such as the inferior colliculus (Möller et al. 1978a,b; Schuller, 1979a; Schuller and Pollak 1979) and cortex (reviewed by Suga). But beyond the sheer proliferation, the reports have provided much more sophisticated and detailed insights into the principles that underly both the structural and functional organization of the Chiropteran auditory system than were known before. In the previous section, Dr. Neuweiler reviewed the data from studies of the cochlea and lower brain stem centers of the horseshoe bat whereas in the following section Drs. O’Neill and Suga have summarized their findings from the cortex of the long CF/FM mustache bat. In this chapter, I shall attempt to bridge the intervening gap by reviewing the results obtained from experiments on the inferior colliculus.

Keywords

Inferior Colliculus Tuning Curve Tone Burst Good Frequency Filter Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, L.M. Tonotonic organization at higher levels of the auditory pathway. In: Internatural Review of Physiology: Neurophysiology II. R. Porter (Ed). University Park Press, London. Vol. 10, pp. 249–280 (1976).Google Scholar
  2. Bruns, V. Peripheral auditory tuning for five frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specialization of the cochlea. J. Comp. Physiol. 106, 77–86 (1976a).CrossRefGoogle Scholar
  3. Bruns, V. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum: II Frequency mapping of the cochlea. J. Comp. Physiol. 106, 87–97 (1976b).CrossRefGoogle Scholar
  4. Bodenhamer, R., Pollak, G.D. and Marsh, D.S. Coding of fine frequency information by echoranging neurons in the inferior colliculus of the Mexican free-tailed bat. Brain Res. (in press).Google Scholar
  5. Capranica, R. Why auditory neurophysiologists should be more interested in animal sound communication. Physiologist 15, 55–60 (1972).PubMedGoogle Scholar
  6. Feng, A.S., Simmons, J.A., and Kick, S.A. Echodetection and target ranging neurons in the auditory system of the bat, Eptesicus fucus. Science 202, 645 (1978).PubMedCrossRefGoogle Scholar
  7. Friend, J.H., Suga, N. and Suthers, R.A. Neural responses in the inferior colliculus of echolocating bats to artificial orientation sounds and echoes. J. Cell. Physiol. 67, 319–332 (1966).PubMedCrossRefGoogle Scholar
  8. Goldman L.J. and Henson, O.W., Jr. Prey recognition and selection by the constant frequency bat, Pteronotus p. parnellii. Behav. Ecol. Sociobiol. 2, 411–419 (1977).CrossRefGoogle Scholar
  9. Griffin, D.R. Discriminative echolocation by bats. In Les Systems Sonars Animaux. R.G. Busnel (Ed.) INRA-CNRZ, Jouy-en-Josas, France, Vol. 1, pp. 273–300 (1967).Google Scholar
  10. Grinnell, A.D. The neurophysiology of audition in bats; intensity and frequency parameters. J. Physiol., London 167, 38–66 (1963a).Google Scholar
  11. Grinnell, A.D. The neurophysiology of audition in bats: temporal parameters. J. Physiol., London 167, 67–96 (1963b).Google Scholar
  12. Grinnell, A.D. Comparative auditory neurophysiology of neotropical bats employing different echolocation sounds Z. Vergl. Physiol. 68, 117–153 (1970).CrossRefGoogle Scholar
  13. Grinnell, A.D. and Hagiuvara, S. Adaptations of the auditory system for echolocation: studies of New Guinea bats. Z. Vergl. Physiol. 76., 41–81 (1972).CrossRefGoogle Scholar
  14. Henson, M.M. The basilar membrane of the bat, Pteronotus p. parnellii. Am. J. Anat. 153, 143–158 (1978).PubMedCrossRefGoogle Scholar
  15. Henson, O.W. Jr., Pollak, G.D., Johnson, R.A., and Goldman, L.J. Specialized properties of the auditory system in the bat Pteronotus p. parnellii. Anat. Rec. 107, 373 (1974).Google Scholar
  16. Henson, O.W., Jr. and Goldman, L.J. Prey detection and physiological aspects of the cochlea in the bat Pteronotus p. parnellii. Anat. Rec. 184, 425 (1976).Google Scholar
  17. Jen, P.H.-S. Electrophysiological properties of auditory neurons in the superior olivary complex of echolocating bats. J. Comp. Physiol. 128, 47–56 (1978).CrossRefGoogle Scholar
  18. Möller, J., Neuweiler, G., and Zöller, H. Response characteristics of inferior colliculus neurons of the awake CF-FM bat, Rhinolophus ferrumequinum. I. Single tone stimulation. J. Comp. Physiol. 125, 217–225 (1978a).CrossRefGoogle Scholar
  19. Möller, J. Response characteristics of inferior colliculus neurons of the awake CF-FM bat, Rhinolophus ferrumequinum. II. Two tone stimulation. J. Comp. Physiol. 125, 227–236 (1978b).CrossRefGoogle Scholar
  20. Neuweiler, G. and Vater, M. Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 115, 119–133 (1977).CrossRefGoogle Scholar
  21. Novick, A. Orientation in neotropical bats. II. Phyllostomatidae and Desmodontidae. J. Mammal. 44, 44–56 (1963).CrossRefGoogle Scholar
  22. Novick, A. Echolocation in bats: Some aspects of pulse design. Amer. Sci. 59, 198–209 (1971).PubMedGoogle Scholar
  23. Novick, A. and Vaisnys, R. Echolocation of flying insects by the bat, Chilonycteris parnellii. Biol. Bull. 128, 297–314 (1964).CrossRefGoogle Scholar
  24. Pollak, G.D., Marsh, D., Bodenhamer, R., and Souther, A. Echo-detecting characteristics of neurons in the inferior colliculus of unanesthetized bats. Science 196, 675–678 (1977a).PubMedCrossRefGoogle Scholar
  25. Pollak, G.D., Bodenhamer, R., Marsh, D.S., and Souther, A. Recovery cycles of single neurons in the inferior colliculus of unanesthetized bats obtained with frequency modulated and constant frequency sounds. J. Comp. Physiol. 120, 215–250 (1977b).CrossRefGoogle Scholar
  26. Pollak, G.D., Marsh, D.S., Bodenhamer, R. and Souther, A. Characteristics of Phasic on neurons in the inferior colliculus of unanesthetized bats with observations relating to mechanisms for echo ranging. J. Neurophysiol. 40, 926–942 (1977c).PubMedGoogle Scholar
  27. Pollak, G.D., Marsh, D.S., Bodenhamer, R., and Souther A. A single unit analysis of inferior colliculus in unanesthetized bats: response patterns and spike-count functions generated by constant frequency and frequency modulated sounds. J. Neurophysiol. 41, 677–691 (1978).PubMedGoogle Scholar
  28. Pollak, G.D., and Schuller, G. Tonotopic organization and response patterns to frequency modulated signals in the inferior colliculus of Horseshoe bats. Soc. Neurosci. Abstr. 4, 9 (1978).Google Scholar
  29. Pollak, G.D., Henson, O.W. Jr. and Johnson, R.A. Multiple specializations in the peripheral auditory system of the CF-FM bat, Pteronotus parnellii. J. Comp. Physiol. (in press).Google Scholar
  30. Schlegel, P. Directional coding of binaural brainstem units of the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 118, 327–352 (1977).CrossRefGoogle Scholar
  31. Schnitzler, H.-U. Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera, Rhinolophidae) in verschiedenen. Orientierungesituationen. Z. Vergl. Physiol. 57, 376–408 (1968).CrossRefGoogle Scholar
  32. Schnitzler, H.-U. Echoortung bei der Fledermaus Chilonyteris rubiginosa. Z. Vergl. Physiol. 68, 25–38 (1970)CrossRefGoogle Scholar
  33. Schnitzler, H.-U. Die Detektion von Bewegungen durch Echootung bei Fledermäusen. Verh. Dtsche Zool. Gesc. 16–33 (1978).Google Scholar
  34. Schnitzler, H.-U., Suga, N., and Simmons, J.A. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 106, 99–110 (1976).CrossRefGoogle Scholar
  35. Schuller, G. Echoortung bei Rhinolophus ferrumequinum mit frequenz-modulierten Lauten. Evoked potentials in colliculus inferior. J. Comp. Physiol. 77, 306–331 (1972).CrossRefGoogle Scholar
  36. Schuller, G. Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the “CF-FM” bat, Rhinolophus ferrumequinum. Exp. Brain. Res. 34, 117–132 (1979a).PubMedCrossRefGoogle Scholar
  37. Schuller, G. Vocalization alters responsivness of auditory neurons in CF-FM bat, Rhinolophus ferrumequinum. J. Comp. Physiol. (1979b, in press).Google Scholar
  38. Schuller, G., Beuter, K., and Schnitzler, H.-U. Response to frequency shifted artificial echoes in the bat, Rhinolophus ferrumequinum. J. Comp. Physiol. 89, 275–286 (1974).CrossRefGoogle Scholar
  39. Schuller, G. and Pollak, G.D. Disproportionate frequency representation in the inferior colliculus of Horseshoe bats: Evidence for an “acoustic fovea”. J. Comp. Physiol, (in press).Google Scholar
  40. Simmons, J.A. The resolution of target range by echolocating bats. J. Acoust. Soc. Amer. 54, 157–173 (1973).CrossRefGoogle Scholar
  41. Simmons, J.A., Howell, D.J., and Suga, N. Information content of bat sonar echoes. Amer. Sci. 63, 204–215 (1975).PubMedGoogle Scholar
  42. Simmons, J.A., Fenton, M.B., and O’Farrell, M.J. Echolocation and pursuit of prey by bats. Science 203, 16–21 (1979).PubMedCrossRefGoogle Scholar
  43. Suga, N. Single unit activity in the cochlear nucleus and inferior colliculus of echolocating bats. J. Physiol. (London). 172, 449–474 (1964a).Google Scholar
  44. Suga, N. Recovery Cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J. Physiol. (London) 175, 50–80 (1964b).Google Scholar
  45. Suga, N. Echo-ranging neurons in the inferior colliculus of bats. Science 170, 449–452 (1970).PubMedCrossRefGoogle Scholar
  46. Suga, N. Feature extraction in the auditory system of bats. In: Basic Mechanisms in Hearing. (Ed. A.R. Möller) pp. 675–742, Academic Press, New York (1973).CrossRefGoogle Scholar
  47. Suga, N. Amplitude-spectrum representation in the Doppler-shifted CF processing area of the auditory cortex of the mustache bat. Science 196, 64–67 (1977).PubMedCrossRefGoogle Scholar
  48. Suga, N. Specialization of the auditory system for reception and processing of species-specific sounds. Fed. Proc. 37, 2342–2354 (1978).PubMedGoogle Scholar
  49. Suga, N., Simmons, J.A., and Jen, P.H.-S. Peripheral control of acoustic signals in the auditory system of echolocating bats. J. Exp. Biol. 62, 277–311 (1975).PubMedGoogle Scholar
  50. Suga, N. and Schlegel, P. Coding and processing in the nervous system of FM signal producing bats. J. Acoust. Soc. Amer. 84, 174–190 (1973).CrossRefGoogle Scholar
  51. Suga, N., Neuweiler, G., and Möller, J. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J. Comp. Physiol. 106, 111–125 (1976).CrossRefGoogle Scholar
  52. Suga, N. and Jen, P.H.-S. Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat’s auditory cortex. Science 194, 542–544 (1976).PubMedCrossRefGoogle Scholar
  53. Vater, M., Schlegel, P. and Zöller, H. Comparative auditory physiology of the inferior colliculus of two mollosid bats, Molossus ater and Molossus molossus. I. Gross evoked potentials and single unit responses to pure tone stimulation. J. Comp. Physiol. (1979a, in press).Google Scholar
  54. Vater, M. and Schlegel, P. Comparative auditory physiology of the inferior colliculus of two mollosid bats, Molossus ater and Molosus molosus. II Single unit responses to frequency modulated signals and signal/noise combinations. J. Comp. Physiol. (1979b, in press).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • George D. Pollak
    • 1
  1. 1.Department of ZoologyUniversity of TexasAustinUSA

Personalised recommendations