Peripheral Sound Processing in Odontocetes

  • Kenneth S. Norris
Part of the NATO Advanced Study Institutes Series book series (volume 28)


A decade ago two divergent theories describing peripheral sound processing in odontocetes had been formulated. Their differences were unresolved. One view held that sounds were generated in the larynx, radiated through the soft tissue of the throat or transmitted up through the skull and rostrum. Reception was thought restricted to the region of the external auditory meatus, a pinhole in most odontocetes. Sounds gathered at this region were thought to be transmitted to the middle ear via the narrow and sometimes occluded external auditory canal and the tympanic ligament (Fraser and Purves, 1959; Purves, 1966). The second view suggested quite radical modification of both sound reception and transmission paths. Sounds were envisioned as being produced by extra-laryngeal structures adjacent to the nasal passages in the forehead, and transmitted and transduced into the water via the fatty melon of the odontocete forehead, or through the mesorostral canal of the odontocete snout.


External Auditory Canal Killer Whale Sound Field Sound Production Sperm Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blomberg, J., 1978, Functional aspects of odontocete head oil lipids with special reference to pilot whale head oil, Prog. Chem. Fats and other Lipids, 16:257.CrossRefGoogle Scholar
  2. Bullock, T.H., Grinnell, A. D., Ikezono, E., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanigasawa, K., 1968, Electrophysiological studies of the central auditory mechanisms in cetaceans, Z. vergl. Physiol., 59:117.Google Scholar
  3. Bullock, T. H., and Ridgway, S. H., 1972, Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds, J. Neurobiol., 3:79.PubMedCrossRefGoogle Scholar
  4. Clarke, M. R., 1978, Buoyancy control as a function of the spermaceti organ in the sperm whale, J. Mar. Biol. Assoc, United Kingdom, 58:27.CrossRefGoogle Scholar
  5. Clarke, M. R., 1979, The head of the sperm whale, Scientific Amer., 1:128.CrossRefGoogle Scholar
  6. Diercks, K. J., Trochta, R. T., Greenlaw, R. L., and Evans, W. E., 1971, Recordings and analysis of dolphin echolocation signals, J. Acoust. Soc. Amer., 49:1729.CrossRefGoogle Scholar
  7. Dormer, K. J., 1974, The mechanism of sound production and measurement of sound processing in delphinid cetaceans, Ph. D. Diss., University of California, Los Angeles.Google Scholar
  8. Dubrovsky, N. A., and Zaslavski, G. L., 1975, Role of the skull bones in the space-time development of the dolphin echolocation signal, Sov. Phys. Acoust., 21 (Trans. Amer. Inst. Physics.).Google Scholar
  9. Evans, W. E., 1973, Echolocation by marine delphinids and one species of fresh water dolphin, J. Acoust. Soc. Amer., 54 (1):191.CrossRefGoogle Scholar
  10. Evans, W. E., and Prescott, J. H., 1962, Observations of the sound production capabilities of the bottlenose porpoise: a study of whistles and clicks, Zoologica, 47:121.Google Scholar
  11. Evans, W. E., Sutherland, W. W., and Beil, R. G., 1964, The directional characteristics of delphinid sounds, in: “Marine Bio-Acoustics”, W. N. Tavolga, ed.Google Scholar
  12. Evans, W. E., and Maderson, P. F. A., 1973, Mechanisms of sound production in delphinid cetaceans: a review and some anatomical considerations, Amer. Zool., 13:1205.Google Scholar
  13. Fraser, F. C., and Purves, P. E., 1959, Hearing in whales, Endeavour, 18:93.CrossRefGoogle Scholar
  14. Giro, L. R., and Dubrovsky, N. A., 1974, The possible role of supra-cranial air sacs in the formation of echo ranging signals, A. Kurstichevkiy Zhurnal, 20:706.Google Scholar
  15. Kellogg, W. N., 1960, Auditory scanning in the dolphin, Psychol.Rec, 10:25.Google Scholar
  16. Kozak, V. A., 1974, The “video acoustical system” of the sperm whale, Trans.: Zhur. Evolyutsionnoi Biokhimii i Fiziologii, 10(3): 276.Google Scholar
  17. Litchfield, C., and Greenberg, A. J., 1974, Comparative lipid patterns in the melon fats of dolphins, porpoises, and toothed whales, Comp. Biochem. Physiol., 478:401.Google Scholar
  18. Malins, D. C., and Varanasi, U., 1977, Acoustic pathways in the cetacean head: assessment of sound properties through the use of a new microtechnique, (abst.), Proc. 2nd Conf. on Biol. of Marine Mammals, 36.Google Scholar
  19. McCormick, J. G., Wever, E. G., Palin, J., Ridgway, S. H., 1970, Sound conduction in the dolphin ear, J. Acoust. Soc. Amer., 48:1418.CrossRefGoogle Scholar
  20. Norris, K. S., 1964, Some problems of echolocation in cetaceans, in: “Marine Bioacoustics”, Pergamon Press, New York.Google Scholar
  21. Norris, K. S., 1968, The evolution of acoustic mechanisms in odontocete cetaceans, in: “Evolution and Environment”, E. T. Drake, ed., Yale University Press, New Haven.Google Scholar
  22. Norris, K. S., Presscott, J. H., Asadorian, P. V. and Perkins, P., 1961, An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus (Montagu), Biol. Bull., 120:163.CrossRefGoogle Scholar
  23. Norris, K. S., Evans, W. E., and Turner, R. N., 1966, Echolocation in an Atlantic bottlenose porpoise during discrimination, in: “Les Systèmes Sonars Animaux, Biologie et Bionique, Tome I.”, R. G., Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas.Google Scholar
  24. Norris, K. S., and Evans, W. E., 1967, Directionality of echolocation clicks in the rough-tooth porpoise, Steno bredanensis (Lesson), in: “Marine Bio-Acoustics, Vol. 2”, W. N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  25. Norris, K. S., Dormer, K. J., Pegg, J., and Liese, G. J., 1971, The mechanisms of sound production and air recycling in porpoises: a preliminary report, in: “Proceedings of the 8th Annual Conference Biol. Sonar and Diving Mammals”.Google Scholar
  26. Norris, K. S., and Harvey, G. W., 1972, A theory for the function of the spermaceti organ of the sperm whale (Physeter catodon L.), National Atmos. and Space Admin., Special Publication, 262:397.Google Scholar
  27. Norris, K. S., and Harvey, G. W., 1974, Sound transmission in the porpoise head, J. Acoust. Soc. Amer., 56:659.CrossRefGoogle Scholar
  28. Purves, P. E., 1966, Anatomical and experimental observations on the cetacean sonar system, in: “Les Systèmes Sonars Animaux, Biologie et Bionique, Tome I”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas.Google Scholar
  29. Raven, H. S., and Gregory, W. K., 1933, The spermaceti organ and nasal passages of the sperm whale (Physeter catodon) and other odontocetes, Amer. Mus. Novitates, 677:1.Google Scholar
  30. Schenkkan, E. J. and Purves, P. E., 1973, The comparative anatomy of the nasal tract and the function of the spermaceti organ in the Physeteridae (Mammalia, Odontoceti), Bijdragen tot de Dierkunde, 43:93.Google Scholar
  31. Schevill, W. E., and Watkins, W. A., 1966, Sound structure and directionality in Orcinus (Killer Whale), Zoologica, 51:71.Google Scholar
  32. Varanasi, U., and Malins, D. G., 1971, Unique lipids of the porpoise (Tursiops gilli): Differences in triacyl glycerols and waxesters of acoustic (mandibular canal and melon) and blubber tissues, Biochem. and Biophys. Acta, 231:415.CrossRefGoogle Scholar
  33. Varanasi, U., Feldman, H. R., and Malins, D. C., 1975, Molecular basis for formation of lipid sound lens in echolocating cetaceans, Nature, 255:340.CrossRefGoogle Scholar
  34. Watkins, W. A., 1977, Acoustic behavior of sperm whales, Oceanus, 50–58.Google Scholar
  35. Wedmid, Y., Litchfield, C., Ackman, R. G., Sipos, J. C., Eaton, C. A., and Mitchell, E., 1973, Heterogeneity of lipid composition within the cephalic melon tissue of the pilot whale (Globicephala melaena), Biochem. and Biophys. Acta, 326:439.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Kenneth S. Norris
    • 1
  1. 1.Coastal Marine LaboratoryUniversity of California — Environmental StudiesSanta CruzUSA

Personalised recommendations