Behavioral Measures of Odontocete Hearing

  • Arthur N. Popper
Part of the NATO Advanced Study Institutes Series book series (volume 28)


Much of what is now known about hearing mechanisms in vertebrates has come from studies using behavioral and psychophysical techniques to ask questions regarding auditory detection and processing. These studies have included determination of detection capabilities for a variety of signals presented in a quiet environment and in the presence of other signals. Such studies are valuable in determining the resolving and analysis capabilities of the auditory system. Other investigations have been directed at determining an animal’s ability to discriminate between signals that differ in a variety of parameters, including intensity, frequency, spectral components, position in space, or temporal relationships. Such studies provide insight into detection capabilities of an animal, as well as provide information on mechanisms of acoustic processing at different levels of the auditory system.


Pure Tone Inferior Colliculus Bottlenose Dolphin Sound Localization Frequency Discrimination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, S. Auditory sensitivity of the harbour porpoise Phocoena phocoena. In: Investigations on Cetacea, (Ed. by G. Pilleri) Benteli Ag. Vol. 3. pp. 255–259 (1971a).Google Scholar
  2. Andersen, S. Directional hearing in the harbour porpoise Phocoena phocoena. In: Investigations on Cetacea. (Ed. by G. Pilleri) Benteli Ag. Vol. 3. pp. 260–264 (1971b).Google Scholar
  3. Au, W.W.L., Floyd, R.W., Penner, R.H. & Murchison, A.E. Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open water. J. Acoust. Soc. Amer., 56; 1280–1290 (1974).CrossRefGoogle Scholar
  4. Ayrapet’yants, E.S. & Konstantinov, A.I. Echolocation in Nature. Joint Publication Research Service. #JPS 63326–1–2 (1974).Google Scholar
  5. Bullock, T.H., Grinnel, A.D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N. & Yanagisawa, K. Electrophysiological studies of the central auditory mechanisms in cetaceans. Z. vergl. Physiol., 59; 117–156 (1968).Google Scholar
  6. Burdin, V.I., Markov, V.I., Reznik, A.M., Skoriyakov, V.M. & Chupakov, A.G. Determination of the differential intensity threshold for white noise in the bottlenose dolphin (Tursiops truncatus Barabasch). In: Morphology and Ecology of Marine Mammals (Ed. by K.K. Chapskii & V.E. Sokolov) Wiley, NY p. 112 (1973).Google Scholar
  7. Dudok van Heel, W.H. Audio-direction findings in the porpoise Phocoena phocoena. Nature 183; 1063 (1959).CrossRefGoogle Scholar
  8. Dudok van Heel, W.H. Sound and cetacea. Netherlands J. Sea Res. 1, 407–507 (1962).CrossRefGoogle Scholar
  9. Erulkar, S.D. Comparative aspects of spatial localization of sound. Physiol. Rev., 52; 237–260 (1972).PubMedGoogle Scholar
  10. Evans, W.E. Ecolocation by marine delphinids and one species of freshwater dolphin. J. Acoust. Soc. Amer., 54: 191–199 (1973).CrossRefGoogle Scholar
  11. Fay, R.R. Auditory frequency discrimination in vertebrates. J. Acoust. Soc. Amer., 56; 206–209 (1974).CrossRefGoogle Scholar
  12. Gentry, R.L. Underwater auditory localization in the California sea lion (Zalophus californianus). J. Aud. Res., 7; 187–193 (1967).Google Scholar
  13. Gourevitch, G. Detectability of tones in quiet and in noise by rats and monkeys. In: Animal Psychophysics (Ed. by W.C. Stebbins) Appleton-Century-Crofts, NY pp. 67–98 (1970).Google Scholar
  14. Green, D.M. & Swets, J.A. Signal Detection Theory and Psychophysics. Wiley, NY (1966).Google Scholar
  15. Greenwood, D.N. Critical bandwidths and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Amer., 33: 1344–1356 (1961).CrossRefGoogle Scholar
  16. Hall, J.D. & Johnson, CS. Auditory thresholds of a killer whale Orcinus orca Linnaeus. J. Acoust. Soc. Amer., 51: 515–517 (1972).CrossRefGoogle Scholar
  17. Hawkins, J.E. & Steven, S.S. The masking of pure tones by white J. Acoust. Soc. Amer., 22: 6–13 (1950).CrossRefGoogle Scholar
  18. Herman, L.M. & Arbeit, W.R. Frequency discrimination limens in the bottle-nose dolphin: 1070 KC/S. J. And. Res., 12: 109–120 (1972).Google Scholar
  19. Jacobs, D.W. Auditory frequency discrimination in the Atlantic bottlenose dolphin, Tursiops truncatus Montagu: A preliminary report. J. Acoust. Soc. Amer., 52: 696–698 (1972).CrossRefGoogle Scholar
  20. Jacobs, D.W. & Hall, J.D. Auditory thresholds of a freshwater dolphin, Inia geoffrensis Blainville. J. Acoust. Soc. Amer., 51: 530–533 (1972).CrossRefGoogle Scholar
  21. Johnson, C.S. Auditory thresholds of the bottlenose dolphin (Tursiops truncatus Montagu). U.S. Naval Ordinance Test Station NOTSTP 4178, 25 pp. (1966).Google Scholar
  22. Johnson, C.S. Sound detection thresholds in marine mammals. In: Marine Bio-Acoustics II. (Ed. by W.N. Tavolga) Pergamon Press, NY pp. 247–260 (1967).Google Scholar
  23. Johnson, C.S. Masked tonal thresholds in the bottlenosed porpoise. J. Acoust. Soc. Amer., 44: 965–967 (1968).CrossRefGoogle Scholar
  24. Kellogg, W.N. Ultrasonic hearing in the porpoise, Tursiops truncatus (Mont.). Aquatic mammals, 4: 1–9 (1953).Google Scholar
  25. Masterton, B., Heffner, H., & Ravizza, R. The evolution of human hearing. J. Acoust. Soc. Amer. 45: 966–985 (1969).CrossRefGoogle Scholar
  26. McDonald-Renaud, D.L. Sound localization in the bottlenose porpoise, Tursiops truncatus (Montagu). Ph.D. Thesis, University of Hawaii (1974).Google Scholar
  27. Mills, A.W. Auditory localization. In: Foundations of Modern Auditory Theory (Ed. by J.V. Tobias) Academic Press, NY Vol. II. pp. 303–348 (1972).Google Scholar
  28. Möhl, B. Preliminary studies on hearing in seals. Vidensk. Medd. fra Dansk Naturh. Foren., 127: 283–294 (1964).Google Scholar
  29. Möhl, B. Frequency discrimination in the common seal and a discussion of the concept of upper hearing limit. In: Underwater Acoustics. (Ed. by V.M. Alberts) Plenum, NY Vol. 2. pp. 43–54 (1967).Google Scholar
  30. Möhl, B. Auditory sensitivity of the common seal in air and water. J. Aud. Res., 8: 27–35 (1968).Google Scholar
  31. Moore, P. Underwater localization of click and pulsed pure tone signals by the California sea lion (Zalophus californianus). J. Acoust. Soc. Amer., 57: 406–410 (1975).CrossRefGoogle Scholar
  32. Moore, P. & Au, W. Underwater localization of pulsed pure tones by the California sea lion (Zalophus californianus). J. Acoust. Soc. Amer., 58: 721–727 (1975).CrossRefGoogle Scholar
  33. Moore, P. & Schusterman, R.J. Discrimination of pure tone intensities by the California sea lion. J. Acoust. Soc. Amer., 60: 1405–1407 (1976).CrossRefGoogle Scholar
  34. Reisz, R.R. Differential sensitivity of the ear for pure tones. Phys. Rev., 31: 867–875 (1928).CrossRefGoogle Scholar
  35. Renaud, D.L. & Popper, A.N. Sound localization by the bottlenose Porpoise, Tursiops truncatus. J. Exp. Biol., 63: 569–585 (1975).PubMedGoogle Scholar
  36. Scharf, B. Critical bands. In: Foundations of Modern Auditory Theory (ed. by J.V. Tobias) Academic Press, NY Vol. I. pp. 157–202 (1970).CrossRefGoogle Scholar
  37. Schevill, W.E. & Lawrence, B. Auditory response of a bottlenosed porpoise, Tursiops truncatus, to frequencies above 100 KC. J. Exp. Zool., 124: 147–165 (1953a).CrossRefGoogle Scholar
  38. Schevill, W.E. & Lawrence, B. High-frequency auditory responses of a bottlenosed porpoise, Tursiops truncatus (Montagu). J. Acoust. Soc. Amer., 25: 1016–1017 (1953b).CrossRefGoogle Scholar
  39. Schusterman, R.J., Balliet, R.F. & Nixon, J. Underwater audiogram of the California sea lion by the conditional vocalization technique. J. Exp. Anal. Behav., 17: 339–350 (1972).PubMedCrossRefGoogle Scholar
  40. Schusterman, R. J. & Moore, P. A. The upper limit of underwater auditory frequency discrimination in the California sea lion. J. Acoust. Soc. Amer., 63: 1591–1595 (1978).CrossRefGoogle Scholar
  41. Sukhoruchenko, M.N. Frequency discrimination in dolphins (Phocoena phocoena). Fiziol. AH. SSR. IM. M. Sechenova, 59: 1205–1210 (1973).Google Scholar
  42. Terhune, J.M. Directional hearing of a harbor seal in air and water. J. Acoust. Soc. Amer., 56: 1862–1865 (1974).CrossRefGoogle Scholar
  43. Terhune, J.M. & Ronald, K. Masked hearing thresholds of ringed seals. JH. Acoust. Soc. Amer., 58: 515–516 (1975).CrossRefGoogle Scholar
  44. Thompson, R.K.R. & Herman, L.M. Underwater frequency discrimination in the bottlenosed dolphin (1–140 kHz) and human (1–8 kHz). J. Acoust. Soc. Amer., 57: 943–948 (1975).CrossRefGoogle Scholar
  45. Watson, C. Masking of tones by noise for the cat. J. Acoust. Soc. Amer., 35: 167–172 (1963).CrossRefGoogle Scholar
  46. Wever, E.G., McCormick, J.G., Palin, J. & Ridgway, S.H. The cochlea of the dolphin Tursiops truncatus: General morphology. Proc. National Acad. Sci., 68: 2381–2385 (1971).CrossRefGoogle Scholar
  47. Wever, E.G., McCormick, J.G., Palin, J. & Ridgway, S.H. Cochlear structure in the dolphin, Lagenorhynchus obliquidens. Proc. National Acad. Sci., 69: 657–661 (1972).CrossRefGoogle Scholar
  48. Yunker, M.P. & Herman, L.M. Discrimination of auditory temporal differences in the bottlenose dolphin and by the human. J. Acoust. Soc. Amer., 56: 1870–1875 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Arthur N. Popper
    • 1
  1. 1.Department of AnatomyGeorgetown UniversityUSA

Personalised recommendations