Echolocation Signals and Echoes in Air

  • J. David Pye
Part of the NATO Advanced Study Institutes Series book series (volume 28)


Since the Frascati meeting in 1966, there has been considerable expansion in our understanding of the acoustic structures used by bats and birds for echolocation in air. In part this has been due to the development of instrumental techniques which were already undergoing something of a revolution at the time. Highspeed tape-recorders suitable for bat recording had only become available a few years previously and their use in conjunction with Sonagraph sound spectrum analysers was then becoming widespread. This combination was rapidly replacing the analysis of waveforms by photographic sampling in real time from an oscilloscope screen which, due to complex phase changes, is open to ambiguous interpretation of harmonics or frequency changes.


Frequency Pattern Noctuid Moth Green Lacewing Cricothyroid Muscle Echolocation Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W.B., 1971. Intensity characteristics of the noctuid acoustic receptor, J. gen. Physiol. 58: 562–579.PubMedCrossRefGoogle Scholar
  2. Adams, W.B., 1972. Mechanical tuning of the acoustic receptor of Prodenia eridania (Cramer) (Noctuidae), J. exp. Biol., 57: 297–308Google Scholar
  3. Agee, H.R., 1967. Response of acoustic sense cell of the bollworm and tobacco budworm to ultrasound, J. econ. Entomol., 60: 366–369.Google Scholar
  4. Agee, H.R., 1969a, Response of flying bollworm moths and other tympanate moths to pulsed ultrasound, Anns. ent. Soc. Amer., 62: 801–807.Google Scholar
  5. Agee, H.R., 1969b, Response of Heliothis spp. (Lepidoptera: Noctuidae) to ultrasound when resting, feeding, courting, mating or ovipositing, Anns. ent. Soc. Amer., 62: 1122–1128.Google Scholar
  6. Agee, H.R., 1969c, Acoustic sensitivity of the European corn borer moth, Ostrinia nubilalis, Anns. ent. Soc. Amer., 62: 1364–1367.Google Scholar
  7. Agee, H.R., 1971, Ultrasound produced by wings of adults of Heliothis zea, J. Insect Physiol., 17: 1267–1273.CrossRefGoogle Scholar
  8. Airapet’yants, E.Sh. and Konstantinov, A.I., 1970/73, “Echolocation in Animals”, Nauka, Leningrad, published 1970 (English translation 1973, Israel Program of Scientific Translations).Google Scholar
  9. Altes, R.A. and Titlebaum, E.L., 1970, Bat signals as optimally doppler tolerant waveforms, J. acoust. Soc. Amer., 48: 1014–1020.CrossRefGoogle Scholar
  10. Bazley, E.N., 1976, Sound absorption in air at frequencies up to 100 kHz, National Physical Laboratory Acoustics Report No. Ac 74.Google Scholar
  11. Bird, G.J.A., 1974, Radar Precision and Resolution, Pentech Press, London.Google Scholar
  12. Bradbury, J.W., 1970, Target discrimination by the echolocating bat, Vampyrum spectrum, J. exp. Zool, 173: 23–46.PubMedCrossRefGoogle Scholar
  13. Buchler, E.R., 1976, The use of echolocation by the wandering shrew (Sorex vagrans), Anim. Behav., 24: 858–873.CrossRefGoogle Scholar
  14. Cahlander, D.A., 1967, in “Animal Sonar Systems: biology and Bionics”, ed. Busnel, R.-G., Jouy-en-Josas, pp. 1052–1081.Google Scholar
  15. Delany, M.E., 1977, Sound propagation in the atmosphere: a historical review, Acustica, 38: 201–223.Google Scholar
  16. Dunning, D.C., 1968, Warning sounds of moths, Z.Tierpsychol., 25: 129–138.PubMedGoogle Scholar
  17. Escudié, B., Hellion, A., Munier, J. and Simmons, J.A., 1976, Etude theoretique des performances des signaux sonar diversité de certaines chauves-souris à l’aide du traitement du signal, Rev. d’Acoust., 38: 216–229.Google Scholar
  18. Evans, L.B., 1974, Atmospheric absorption of sound; temperature dependence, Report No. D3–9190 (code no. 81205)., Boeing Co., Wichita, Kansas.Google Scholar
  19. Fenton, M.B., 1975, Acuity of echolocation in Collocalia hirundinacea (Aves: Apodidae), with comments on the distributions of echolocating swiftlets and molossid bats, Biotropica, 7: 1–7.CrossRefGoogle Scholar
  20. Fenton, M.B. and Bell, G.P. (in press), Echolocation and feeding behaviour in four species of Myotis (Chiroptera), Can. J. Zoo1. Google Scholar
  21. Fenton, M.B. and Roeder, K.D., 1974, The microtymbals of some Arctiidae, J. Lepid. Soc., 28: 205–211.Google Scholar
  22. Fullard, J.H., 1979, Behavioral analyses of auditory sensitivity in Cycnia tenera Hübner (Lepidoptera: Arctiidae), J. comp. Physiol., 129: 79–83.CrossRefGoogle Scholar
  23. Fullard, J.H. and Fenton, M.B., 1977, Acoustic and behavioural analyses of the sounds produced by some species of Nearctic arctiidae (Lepidoptera), Can.J.Zool., 55: 1213–1224.CrossRefGoogle Scholar
  24. Ghiradella, H., 1971, Fine structure of the noctuid moth ear. I. The transducer area and connections to the tympanic membrane in Feltia subgothica, Haworth, J.Morph., 134: 21–46.PubMedCrossRefGoogle Scholar
  25. Glaser, W., 1971, Zur Fledermausortung aus dem Gesichtspunkt der Theorie gestörter Systeme, Zool. Jb. Physiol., 76: 209–229.Google Scholar
  26. Glaser, W., 1974, Zur Hypothese des Optimalempfangs bei der Fledermausortung, J. comp.Physiol., 94: 227–248.CrossRefGoogle Scholar
  27. Goldman, L.J. and Henson, O.W., 1977, Prey recognition and selection by the constant frequency bat, Pteronotus parnellii, Behav. Ecol.Sociobiol., 2: 411–419.CrossRefGoogle Scholar
  28. Gould, E., Negus, N.C. and Novick, A., 1964, Evidence for echolocation in shrews, J. exp. Zool., 156: 19–38.PubMedCrossRefGoogle Scholar
  29. Griffin, D.R., 1954, Acoustic orientation in the oil bird, Steatornis, Proc. nat. Acad. Sci., 39: 884–893.CrossRefGoogle Scholar
  30. Griffin, D.R., 1958, “Listening in the Dark”, Yale Univ. Press.Google Scholar
  31. Griffin, D.R., 1962, Comparative studies of the orientation sounds of bats, Symp. zool. Soc. Lond., 7: 61–72.Google Scholar
  32. Griffin, D.R., 1971, The importance of atmospheric attenuation for the echolocation of bats (Chiroptera), Anim.Behav., 19: 55–61.PubMedCrossRefGoogle Scholar
  33. Griffin, D.R. and Hollander, P., 1973, Directional patterns of bats orientation sounds, Period.Biol., 75: 3–6.Google Scholar
  34. Griffin and Novick, 1975, Acoustic orientation of neotropical bats, J. exp. Zool., 130: 251–300,CrossRefGoogle Scholar
  35. Griffin, D.R. and Simmons, J.A., 1974, Echolocation of insects by horseshoe bats, Nature, Lond, 250: 731–732.CrossRefGoogle Scholar
  36. Griffin, D.R. and Suthers, R.A., 1970, Sensitivity of echolocation in cave swiftlets, Biol.Bull., 139: 495–501.PubMedCrossRefGoogle Scholar
  37. Griffiths, T.A., 1978, Modification of M.Cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses, J.Mammal., 59: 724–730.CrossRefGoogle Scholar
  38. Grinnell, A.D., 1970, Comparative auditory neurophysiology of neotropical bats employing different echolocation signals, Z. vergl. Physiol., 68: 117–153.CrossRefGoogle Scholar
  39. Grinnell, A.D. and Hagiwara, S., 1972a, Adaptations of the auditory nervous system for echolocation: studies of New Guinea bats, Z. vergl. Physiol., 76: 41–81.CrossRefGoogle Scholar
  40. Grinnell, A.D. and Hagiwara, S., 1972b, Studies of auditory neurophysiology in non-echolocating bats and adaptations for echolocation in one genus, Rousettus, Z. vergl. Physiol., 76: 82–96.CrossRefGoogle Scholar
  41. Grinnell, A.D. and Schnitzler, H.U., 1977, Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum; II Behavioral directionality of hearing, J. comp. Physiol., 116: 63–76.CrossRefGoogle Scholar
  42. Grünwald, A., 1969, Untersuchungen zur Orientierung der Weisszahnspitzmaüse (Soricidae-Crocidurinae), Z. vergl. Physiol., 65: 191–217.CrossRefGoogle Scholar
  43. Gustafson, Y. and Schnitzler, H.U., in press, Echolocation and obstacle avoidance in the hipposiderid bat, Asellia tridens, J. comp. Physiol.Google Scholar
  44. Halls, J.A.T., 1978, Radar studies of bat sonar, Proc.Fourth Int. Bat Res.Conf., eds. Olembo, R.J., Castelino, J.B. and Mutere, F.A., Kenya Lit. Bureau, Nairobi, 137–143.Google Scholar
  45. Harrison, T., 1966, Onset of echo-location clicking in Collocalia swiftlets, Nature, Lond., 212: 530–531.CrossRefGoogle Scholar
  46. Jen, P.H.S. and Ostwald, J., 1977, Response of cricothyroid muscles to frequency-modulated sounds in FM bats, Myotis lucifugus, Nature, Lond., 265: 77–78.CrossRefGoogle Scholar
  47. Jen, P.H.S. and Suga, N., 1976, Coordinated activities of middleear and laryngeal muscles in echolocating bats, Science, 191: 950–952.PubMedCrossRefGoogle Scholar
  48. Johnson, R.A., Henson, O.W. and Goldman, L., 1974, Detection of insect wingbeats by the bat, Pteronotus parnellii, J. acoust. Soc.Amer., 55: S53 (Abstract).CrossRefGoogle Scholar
  49. Kelly, E.J. and Wishner, R.P., 1965, Matched-filter theory for high-velocity accelerating targets, I.E.E.E. Trans. mil., Electr., Mil-9: 56–69.CrossRefGoogle Scholar
  50. Kingdon, J., 1974, East African Mammals: an Atlas of Evolution in Africa, Vol. IIA, Academic Press, London & New York.Google Scholar
  51. Konstantinov, A.I. and Sokolov, B.V., 1967, Use of active and passive location by bats in catching insects, 3rd Conf. Ecol. Physiol. Biochem. Morphol., Novosibirsk (in Russian).Google Scholar
  52. Kramer, S.A., 1967, Doppler and Acceleration Tolerances of High-gain Wideband Linear F.M. Correlation Sonars, Proc. I.E.E.E., 55: 627–636.Google Scholar
  53. Kulzer, E., 1958, Untersuchungen Über die Biologie von Flughunden der Gattung Rousettus Gray, Z. Morph. und Ökol der Tiere, 47: 374–402.CrossRefGoogle Scholar
  54. Kulzer, E., 1960, Physiologische und Morphologische Untersuchungen Über die Erzeugung der Orientierungslaute von Flughunden der Gattung Rousettus, Z. vergl. Physiol., 43: 231–268.CrossRefGoogle Scholar
  55. Lawrence, B. and Novick, A., 1963, Behavior as a taxonomic clue: relationships of Lissonycteris (Chiroptera), Breviora, 184: 1–16.Google Scholar
  56. Lechtenberg, R., 1971, Acoustic response of the B cell in noctuid moths, J. Insect Physiol., 17: 2395–2408.CrossRefGoogle Scholar
  57. Lewin, R., 1978, Bats-eye view, Trends in Neurosciences, 1: 38.Google Scholar
  58. Medway, Lord, 1959, Echo-location among Collocalia, Nature, Lond., 184: 1352–1353.CrossRefGoogle Scholar
  59. Medway, Lord, 1967, The function of echo-navigation among swiftlets, Anim.Behav., 15: 416–420,PubMedCrossRefGoogle Scholar
  60. Medway, Lord, 1969, Studies of the biology of the edible-nest swiftlets of South East Asia, Malayan Nature Jour., 22: 57–63.Google Scholar
  61. Medway, Lord and Pye, J.D., 1977, Echolocation and the systematics of swiftlets, in:Evolutionary Ecology, eds. Stonehouse, B. and Perrins, C., Macmillan, London, 225–238.Google Scholar
  62. Medway, Lord and Wells, D.R., 1969, Dark orientation by the giant swiftlet, Collocalia gigas, Ibis, 111: 609–611.CrossRefGoogle Scholar
  63. Miller, L.A., 1970, Structure of the green lacewing tympanal organ (Chrysopa carnea, Neuroptera), J.Morph., 131: 359–382.CrossRefGoogle Scholar
  64. Miller, L.A., 1971, Physiological responses of green lacewings (Chrysopa, Neuroptera) to ultrasound, J. Insect Physiol., 17: 491–506.CrossRefGoogle Scholar
  65. Miller, L.A., 1974, (Abstract) The behavioral response of green lacewings to ultrasound, Amer.Zool., 13: 1258.Google Scholar
  66. Miller, L.A., 1975, The behavior of flying green lacewings, Chrysopa carnea, in the presence of ultrasound. J. Insect Physiol., 21: 205–219.CrossRefGoogle Scholar
  67. Miller, L.A., in press, Interactions between bats and green lacewings (Chrysopa, Insecta) in free flight, Proc. 5th Int. Bat Res.Conf., Texas Tech.Univ.Press.Google Scholar
  68. Miller, L.A. and MacLeod, E.G., 1966, Ultrasonic sensitivity: a tympanal receptor in the green lacewing, Chrysopa carnea, Science, 154: 891–893.Google Scholar
  69. Möhres, F.P., 1953, Über die Ultraschallorientierung der Hufeisennasen (Chiroptera: Rhinolophinae), Z. vergl. Physiol., 34:547–588.CrossRefGoogle Scholar
  70. Möhres, F.P., 1967, Ultrasonic orientation in megadermatid bats, Animal Sonar Systems: biology and bionics, ed. Busnel, R.-G., Jouy-en-Josas, 115–127.Google Scholar
  71. Möhres, F.P. and Kulzer, E., 1955, Ein neuer, kombinierter Typ der Ultraschallorientierung bei Fledermaüsen, Naturwissenschaften, 42: 131–132.CrossRefGoogle Scholar
  72. Möhres, F.P. and Kulzer, E., 1956a, Über die Orientierung der Flughunde (Chiroptera, Pteropodidae), Z. vergl. Physio1., 38: 1–29.CrossRefGoogle Scholar
  73. Möhres, F.P. and Kulzer, E., 1956b, Untersuchungen Über die Ultraschallorientierung von vier afrikanischen Fledermausfamilien, Verh. der Deutsch. zoo1. Ges. in Er1angen, 1955, 59–65.Google Scholar
  74. Möhres, F.P. and Neuweiler, G., 1966, Die Ultraschallorientierung der Grossblat-Fledermaüse (Chiroptera, Megadermatidae), Z. vergl. Physiol., 53: 195–227.CrossRefGoogle Scholar
  75. Novick, A., 1958a, Orientation in paleotropical bats: I. Microchiroptera, J. exp. Zool, 138: 81–154.PubMedCrossRefGoogle Scholar
  76. Novick, A., 1958b, Orientation in paleotropical bats: II. Megachiroptera, J. exp. Zool., 137: 443–462.PubMedCrossRefGoogle Scholar
  77. Novick, A., 1959, Acoustic orientation in the cave swiftlet, Biol.Bull., 117: 497–503.CrossRefGoogle Scholar
  78. Novick, A., 1962, Orientation in neotropical bats: I. Natalidae and Emballonuridae, J.Mammal., 43: 449–455.CrossRefGoogle Scholar
  79. Novick, A., 1963, Orientation in neotropical bats: II. Phyllostomidae and Desmodontidae, J.Mammal., 44: 44–56.CrossRefGoogle Scholar
  80. Novick, A., 1971, Echolocation in bats: some aspects of pulse design, Amer.Scient., 59: 198–209.Google Scholar
  81. Novick, A., 1977, Acoustic orientation, in “Biology of Bats”, ed. Wimsatt, W.A., 3: 73–287.Google Scholar
  82. Novick, A. and Griffin, D.R., 1961, Laryngeal mechanisms in bats for the production of orientation sounds, J. exp. Zool., 148: 125–146.PubMedCrossRefGoogle Scholar
  83. Paul, D.H., 1973, Central projections of tympanic fibres in noctuid moths, J. Insect Physiol., 19: 1785–1792.PubMedCrossRefGoogle Scholar
  84. Paul, D.H., 1974, Responses to acoustic stimulation of thoracic interneurons in noctuid moths, J. Insect Physiol., 20: 2205–2218.PubMedCrossRefGoogle Scholar
  85. Payne, R.S., Roeder, K.D. and Wallman, J., 1966, Directional sensitivity of the ears of noctuid moths, J. exp. Biol., 44: 17–31.PubMedGoogle Scholar
  86. Pecotich, L., 1974, Grey swiftlets in the Tully River Gorge and Chillagoe caves, Sunbird, 5: 16–21.Google Scholar
  87. Peff, T.C. and Simmons, J.A., 1971, Horizontal-angle resolution by echolocating bats, J. acoust. Soc. Amer., 51: 2063–2065.CrossRefGoogle Scholar
  88. Penny, M., 1975, The Birds of Seychelles and the Outlying Islands, Collins, London.Google Scholar
  89. Pierce, G.W., 1925, Piezoelectric crystal oscillators applied to the precision measurement of the velocity of sound in air and carbon dioxide at high frequencies, Proc.Amer.Acad.Arts Sci., 60: 271–302.CrossRefGoogle Scholar
  90. Pye, A., 1978, Aspects of cochlear structure and function in bats, Proc.Fourth Int.Bat Res.Conf., eds. Olembo, R.J., Castelino, J.B. and Mutere, F.A., Kenya Lit.Bureau, Nairobi, 73–83.Google Scholar
  91. Pye, J.D., 1967, Synthesizing the waveforms of bats’ pulses, Animal Sonar Systems: biology and bionics, ed. Busnel, R.-G., Jouy-en-Josas, 43–65.Google Scholar
  92. Pye, J.D., 1968a, Animal sonar in air, Ultrasonics, 6: 32–38.PubMedCrossRefGoogle Scholar
  93. Pye, J.D., 1968b, How insects hear, Nature, Lond., 218: 797.CrossRefGoogle Scholar
  94. Pye, J.D., 1971, Bats and fog, Nature, Lond., 229: 572–574.CrossRefGoogle Scholar
  95. Pye, J.D., 1972, Bimodal distribution of constant frequencies in some hipposiderid bats (Mammalia: Hipposideridae), J.Zool., 166: 323–335.CrossRefGoogle Scholar
  96. Pye, J.D., 1973, Echolocation by constant frequency in bats, Period. biol., 75: 21–26.Google Scholar
  97. Pye, J.D., 1978, Some preliminary observations on flexible echolocation systems, Proc.Fourth Int.Bat Res.Conf., eds. Olembo, R.J., Castelino, J.B. and Mutere, F.A., Kenya Lit.Bureau, Nairobi, 127–136.Google Scholar
  98. Pye, J.D., in press, Why ultrasound?, Endeavour.Google Scholar
  99. Pye, J.D. and Roberts, L.H., 1970, Ear movements in a hipposiderid bat, Nature, Lond., 225: 285–286.CrossRefGoogle Scholar
  100. Rayleigh, Lord, 1896, The Theory of Sound (2nd edn), Macmillan, London.Google Scholar
  101. Roberts, L.H., 1972a, Variable resonance in constant frequency bats, J.Zool., 166: 337–348.CrossRefGoogle Scholar
  102. Roberts, L.H., 1972b, Correlation of respiration and ultrasound production in rodents and bats, J.Zool., 168: 439–449.CrossRefGoogle Scholar
  103. Roberts, L.H., 1973, Cavity resonances in the production of orientation cries, Period. biol., 75: 27–32.Google Scholar
  104. Roberts, L.H., 1975, Confirmation of the echolocation pulse production mechanism of Rousettus, J. Mammal., 56: 218–220.PubMedCrossRefGoogle Scholar
  105. Roeder, K.D., 1963, Echoes of ultrasonic pulses from flying moths, Biol.Bull., 124: 200–210.CrossRefGoogle Scholar
  106. Roeder, K.D., 1966a, Auditory system of noctuid moths, Science, 154: 1515–1521.PubMedCrossRefGoogle Scholar
  107. Roeder, K.D., 1966b, Acoustic sensitivity of the noctuid tympanic organ and its range for the cries of bats, J. Insect Physiol., 12: 843–859.PubMedCrossRefGoogle Scholar
  108. Roeder, K.D., 1966c, A differential anemometer for measuring the turning tendency of insects in stationary flight, Science, 153: 1634–1636.PubMedCrossRefGoogle Scholar
  109. Roeder, K.D., 1966d, Interneurones of the thoracic nerve cord activated by tympanic nerve fibres in noctuid moths, J. Insect Physiol., 12: 1227–1244.PubMedCrossRefGoogle Scholar
  110. Roeder, K.D., 1967a, Prey and predator, Bull. ent. Soc. Amer., 13: 6–9.Google Scholar
  111. Roeder, K.D., 1967b, Turning tendency of moths exposed to ultrasound while in stationary flight, J. Insect Physiol., 13: 873–888.CrossRefGoogle Scholar
  112. Roeder, K.D., 1967c, Nerve cells and insect behaviour, Harvard Univ. Press, Cambridge, Mass., revd. edn.Google Scholar
  113. Roeder, K.D., 1969a, Acoustic interneurons in the brain of noctuid moths, J.Insect Physiol., 15: 825–838.PubMedCrossRefGoogle Scholar
  114. Roeder, K.D., 1969b, Brain interneurons in noctuid moths: differential suppression by high sound intensities, J.Insect Physiol., 15: 1713–1718.PubMedCrossRefGoogle Scholar
  115. Roeder, K.D., 1969c, Acoustic interneurons in the brain of noctuid moths, J. exp. Zool., 134: 127–157.CrossRefGoogle Scholar
  116. Roeder, K.D., 1970, Episodes in insect brains, Amer.Scient., 58: 378–389.Google Scholar
  117. Roeder, K.D., 1971, Acoustic alerting mechanisms in insects, in “Orientation: Sensory Basis”, ed. Adler, H.E., Ann.N.Y. Acad.Sci., 188: 63–79.Google Scholar
  118. Roeder, K.D., 1972, Acoustic and mechanical sensitivity of the distal lobe of the pilifer in choerocampine hawkmoths, J.Insect Physiol., 18: 1249–1264.CrossRefGoogle Scholar
  119. Roeder, K.D., 1974a, Responses of the less sensitive acoustic sense cells in the tympanic organs of some noctuid and geometrid moths, J.Insect Physiol., 20: 55–66.PubMedCrossRefGoogle Scholar
  120. Roeder, K.D., 1974b, Acoustic sensory responses and possible bat evasion tactics of certain moths, Can. Soc. Zool. ann. Meet. Proc., Univ.New Brunswick, 71–78.Google Scholar
  121. Roeder, K.D., 1976, Joys and Frustrations of doing research, Perspectives in Biol.Med., winter, 231–245.Google Scholar
  122. Roeder, K.D. and Fenton, M.B., 1973, Acoustic responsiveness of Scoliopteryx libatrix L. (Lepidoptera: Noctuidae), a moth that shares hibernacula with some insectivorous bats, Can.J.Zoo1., 51: 681–685.CrossRefGoogle Scholar
  123. Roeder, K.D. and Payne, R.S., 1966, Acoustic orientation of a moth in flight by means of two sense cells, Symp. Soc. exp. Biol., 20: 251–272.PubMedGoogle Scholar
  124. Roeder, K.D. and Treat, A.E., 1970, An acoustic sense in some hawkmoths (Choerocampinae), J. Insect Physiol., 16: 1069–1086.CrossRefGoogle Scholar
  125. Roeder, K.D., Treat, A.E. and Vandeberg, J.S., 1968, Auditory sense in certain sphingid moths, Science, 159: 331–333.PubMedCrossRefGoogle Scholar
  126. Roeder, K.D., Treat, A.E. and Vandeberg, J.S., 1970, Distal lobe of the pilifer; an ultrasonic receptor in choerocampine hawkmoths, Science, 170: 1098–1099.PubMedCrossRefGoogle Scholar
  127. Russo, D.M. and Bartberger, C.L., 1964, Ambiguity diagram for linear F.M. sonar, J. acoust. Soc. Amer., 38: 183–190.CrossRefGoogle Scholar
  128. Sales, G.D. and Pye, J.D., 1974, “Ultrasonic Communication by Animals”, Chapman and Hall, London.CrossRefGoogle Scholar
  129. Schnitzler, H.U., 1967, Discrimination of thin wires by flying horseshoe bats (Rhinolophidae), Animal Sonar Systems: biology and bionics, ed. Busnel, R.-G., Jouy-en-Josas, 69–87.Google Scholar
  130. Schnitzler, H.U., 1968, Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen-Orientierungssituationen, Z. vergl. Physiol., 57: 376–408.CrossRefGoogle Scholar
  131. Schnitzler, H.U., 1970a, Echoortung bei der Fledermaus, Chilonycteris rubiginosa, Z. vergl. Physiol., 68: 25–38.CrossRefGoogle Scholar
  132. Schnitzler, H.U., 1970b, Comparison of the echolocation behaviour in Rhinolophus ferrumequinum and Chilonycteris rubiginosa, Bijd. tot de Dierk, 40: 77–80.Google Scholar
  133. Schnitzler, H.U., 1971, Fledermäuse im Windkanal, Z. vergl. Physiol., 73: 209–221.CrossRefGoogle Scholar
  134. Schnitzler, H.U., 1973, Die Echoortung der Fledermäuse und ihre hörphysiologischen Grundlagen, Fortschritte der Zool., 21: 136–189.Google Scholar
  135. Schnitzler, H.U., 1978, Die Detektion von Bewegungen durch Echoortung bei Fledermäusen, Vehr. Dtsch. Zool. Ges., 1978: 16–33.Google Scholar
  136. Schnitzler, H.U., in press, Detection of the fluttering movements of insects by constant frequency bats, Proc. 5th Int.Bat Res. Conf., Texas Tech.Univ.Press.Google Scholar
  137. Schnitzler, H.U. and Grinnell, A.D., 1977, Directional sensitivity of echolocation in the horseshoe bat, Rhinolophus ferrumequinum; I. Directionality of sound emission, J. comp. Physiol., 116: 51–61.CrossRefGoogle Scholar
  138. Schuller, G. and Suga, N,, 1976, Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhino1ophus ferrumequinum, J. comp. Physiol., 107: 253–262.CrossRefGoogle Scholar
  139. Shimozawa, T., Suga, N., Hendler, P. and Schuetze, S., 1974, Directional sensitivity of echolocation system in bats producing frequency-modulated signals, J. exp. Biol., 60: 53–69.PubMedGoogle Scholar
  140. Simmons, J.A., 1969, Acoustic radiation patterns for the echolocating bats, Chilonycteris rubiginosa and Eptesicus fuscus, J. acoust. Soc. Amer., 46: 1054–1056.CrossRefGoogle Scholar
  141. Simmons, J.A., 1970, Distance perception by echolocation: the nature of echo signal-processing in the bat, Bijd. tot de Dierk, 40: 87–90.Google Scholar
  142. Simmons, J.A., 1971, Echolocation in bats: signal processing of echoes for target range, Science, 171: 925–928.PubMedCrossRefGoogle Scholar
  143. Simmons, J.A., 1973, The resolution of target range by echolocating bats, J. acoust. Soc. Amer., 54: 157–173.CrossRefGoogle Scholar
  144. Simmons, J.A., 1974, Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum, J. acoust. Soc. Amer., 56: 672–682.CrossRefGoogle Scholar
  145. Simmons, J.A., in press, Phylogenetic adaptations and the evolution of echolocation in bats (Chiroptera), Proc.5th Int.Ba t Res. Conf., Texas Tech.Univ.Press.Google Scholar
  146. Simmons, J.A., Fenton, M.B. and O’Farrell, M.J., 1979, Echolocation and pursuit of prey by bats, Science, 203: 16–21.PubMedCrossRefGoogle Scholar
  147. Simmons, J.A., Howell, D.J. and Suga, N., 1975, Information content of bat sonar echoes, Amer.Scient., 63: 204–215.Google Scholar
  148. Simmons, J.A., Lavender, W.A. and Lavender, B.A., 1978, Adaptation of echolocation to environmental noise by the bat, Eptesicus fuscus, Proc.Fourth Int.Bat Res.Conf., eds. Olembo, R.J., Castelino, J.B. and Mutere, F.A., Kenya Lit.Bureau, Nairobi, 97–104.Google Scholar
  149. Simmons, J.A., Lavender, W.A., Lavender, B.A., Childs, J.E., Hulebak, K., Rigden, M.R., Sherman, J., Woolman, B and O’Farrell, M.J., 1978, Echolocation by free-tailed bats (Tadarida), J. comp. Physiol., 125: 291–299.CrossRefGoogle Scholar
  150. Simmons, J.A., Lavender, W.A., Lavender, B.A., Doroshow, C.A., Kiefer, S.W., Livingston, R., Scallet, A.C. and Crawley, D.E., 1974, Target structure and echo spectral discrimination by echolocating bats, Science, 186: 1130–1132.PubMedCrossRefGoogle Scholar
  151. Simmons, J.A. and O’Farrell, M.J., 1977, Echolocation by the long-eared bat, Plecotus phyllotis, J. comp. Physiol., 122: 201–214.CrossRefGoogle Scholar
  152. Simmons, J.A. and Verton, J.A., 1971, Echolocation: discrimination of targets by the bat, Eptesicus fuscus, J. exp. Zool., 176: 315–328.CrossRefGoogle Scholar
  153. Strother, G.K. and Mogus, M., 1970, Acoustical beam patterns for bats: some theoretical considerations, J. acoust. Soc. Amer., 48: 1430–1432.CrossRefGoogle Scholar
  154. Suga, N. and Schlegel, P., 1972, Neural attenuation of responses to emitted sounds in echolocating bats, Science, 177: 82–84.PubMedCrossRefGoogle Scholar
  155. Suga, N. and Schlegel, P., 1973, Coding and processing in the auditory system of FM-signal-producing bats, J. acoust. Soc. Amer., 54: 174–190.CrossRefGoogle Scholar
  156. Suga, N., Schlegel, P., Shimozawa, T. and Simmons, J., 1973, Orientation sounds evoked from echolocating bats by electrical stimulation of the brain, J. acoust. Soc. Amer., 54: 793–797.CrossRefGoogle Scholar
  157. Suthers, R.A., 1965, Acoustic orientation by fish-catching bats, J.Zool., 158: 319–348.CrossRefGoogle Scholar
  158. Suthers, R.A., 1967, Comparative echolocation by fishing bats, J.Mammal., 48, 79–87.PubMedCrossRefGoogle Scholar
  159. Suthers, R.A. and Fattu, J.M., 1973, Fishing behaviour and acoustic orientation by the bat (Noctilio labialis), Anim. Behav., 21: 61–66.PubMedCrossRefGoogle Scholar
  160. Suthers, R.A., Thomas, S.P. and Suthers, B.J., 1972, Respiration, wing-beat and ultrasonic pulse emission in an echolocating bat, J. exp. Biol., 56: 37–48.Google Scholar
  161. Tupinier, Y., Biraud, Y., Chiollaz, M. and Escudie, B., in press, Analysis of vespertilionid sonar signals during cruise, pursuit and prey capture, Proc.Fifth Int.Bat Res.Conf., Texas Tech.Univ.Press.Google Scholar
  162. Wassif, K. and Madkour, G., 1968–9, The structure of the hyoid bone, larynx and upper part of trachea in some Egyptian bats, Bull.Zool.Soc.Egypt, 22: 15–26.Google Scholar
  163. Woolf, N.K., 1974, Ontogeny of bat sonar: paired FM signalling, J. acoust. Soc. Amer., 55: S 53 (abstract).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. David Pye
    • 1
  1. 1.Department of Zoology and Comparative PhysiologyQueen Mary CollegeLondonUK

Personalised recommendations