Advertisement

Echolocation Signals of the Atlantic Bottlenose Dolphin (Tursiops truncatus) in Open Waters

  • Whitlow W. L. Au
Part of the NATO Advanced Study Institutes Series book series (volume 28)

Abstract

A wide variety of echolocation experiments performed with the Atlantic bottlenose dolphin (Tursiops truncatus) have indicated that these dolphins possess a highly sophisticated and adaptive sonar system. Results of discrimination experiments have shown that Tursiops can detect a 10% difference in the diameter of metallic spheres (Norris, Evans, Turner, 1967), material composition and thickness differences as small as 0.1 cm in metallic discs (Evans and Powell, 1967), differences between plates shaped as circles, triangles and squares independent of their cross sectional areas, as well as a 6% change in the diameter of the circles (Barta and Evans, 1970; Fish, Johnson, and Ljungblad, 1976), and a 0.8 dB difference in the target strength of corprene cylinders (Evans, 1973). Murchison and Penner (1975) have demonstrated detection ranges of 72.2 m for a 2.54-cm diameter solid steel sphere and 76.8 m for a 7.6-cm diameter water-filled sphere. Range resolution capabilities of 0.9, 1.5 and 2.8 cm for target ranges of 1,3, and 7 m have been reported by Murchison (1976). Nachtigall, Murchison and Au (1978) reported on the ease with which a Tursiops could discriminate between foam cubes and cylinders of different sizes.

Keywords

Peak Frequency Sound Pressure Level Bottlenose Dolphin Beam Pattern Target Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Au, W. W. L., Floyd, R. W., Penner, R. H., and Murchison, A. E., 1974, Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters, J. Acoust. Soc. Am., 56:1280.PubMedCrossRefGoogle Scholar
  2. Au, W. W. L., Floyd, R. W., and Haun, J. E., 1978, Propagation of Atlantic bottlenose dolphin echolocation signals, J. Acoust. Soc. Am., 64:411.CrossRefGoogle Scholar
  3. Barta, R. E., and Evans, W. E., 1970, Private communications in Fish, Johnson, and Ljungblad (1976).Google Scholar
  4. Bel’kovich, V. M., and Dubrovskiy, N. A., 1977, Sensory bases of Cetacean orientation, U.S. Joint Publication Research Service JPRSL/7157, May 27.Google Scholar
  5. Burdic, W. S., 1968, “Radar Signal Analysis”, Prentice-Hall, Inc., Englewood Cliff, N. J.Google Scholar
  6. Diercks, K. J., Trochta, R. T., Greenlaw, C. F., Evans, W. E., 1971, Recording and analysis of dolphin echolocation signals, J. Acoust. Soc. Am., 49:1729.CrossRefGoogle Scholar
  7. Diercks, K. J., 1972, Biological sonar systems: a bionics survey, Applied Research Laboratories Technical Report N° 72–34 (ARL-TR-72–34), 190.Google Scholar
  8. Dubrovskiy, N. A., and Zaslavskiy, G. L., 1975, Skull bone, dolphin sounding pulses, “Dolphin Echolocation” (Joint U.S. publication Research Service, JPRS 65777, Sept. 79).Google Scholar
  9. Evans, W. E., Sutherland, W. W., and Beil, R. G., 1964, The directional characteristics of delphinid sounds, in: “Marine Bio-Acoustics,” W. N. Tavolge, ed., Pergamon Press, New York.Google Scholar
  10. Evans, W. E., and Powell, B. A., 1967, Discrimination of different metallic plates by an echolocating delphinid, in: “Proc. Symp. Animal Sonar Systems: Biology and Bionics”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Jo-sas, France.Google Scholar
  11. Evans, W. E., 1973, Echolocation by marine delphinids and one species of fresh-water dolphin, J. Acoust. Soc. Am., 54:191.CrossRefGoogle Scholar
  12. Evans, W. E., and Maderson, P. F. A., 1973, Mechanisms of sound production in delphinid cetaceans: a review and some anatomical considerations, Am. Zool., 13:1205.Google Scholar
  13. Fish, J. F., Johnson, C. S., and Ljungblad, K. K., 1976, Sonar target discrimination by instrumented human divers, J. Acoust. Soc. Am., 59:602.PubMedCrossRefGoogle Scholar
  14. Hammer, C., and Au, W. W. L., 1978, Target recognition via echo-location by an Atlantic bottlenose porpoise (Tursiops truncatus), J. Acoust. Soc. Am., 64, Suppl. N° 1:587.CrossRefGoogle Scholar
  15. Hollien, H., Hollien, P., Caldwell, D. K., and Caldwell, M. C., 1976, Sound production by the Atlantic bottlenose dolphin Tursiops truncatus, Cetology, 26:1.Google Scholar
  16. Morozov, B. P., Akapiam, A. E., Burdin, B. I., Zaitseva, K. A., Sokovykh, Y. A., 1972, Tracking frequency of the location signals of dolphins as a function of distance to the target, Biofizika, 17:139.PubMedGoogle Scholar
  17. Murchison, A. E., and Penner, R. H., 1975, Open water echolocation in the bottlenose dolphin (Tursiops truncatus): metallic sphere detection threshold as a function of distance, in: “Proceedings of Conference on the Biology and Conservation of Marine Mammals,” University of California, Santa Cruz, Ca.Google Scholar
  18. Murchison, A. E., 1976, Range resolution by an echolocating dolphin (Tursiops truncatus), J. Acoust. Soc. Am., 60:S5.CrossRefGoogle Scholar
  19. Nachtigall, P. E., Murchison, A. E., and Au, W. W. L., 1978, Discrimination of solid cylinders and cubes by a blindfolded echolocating bottlenose dolphin (Tursiops truncatus), J. Acoust. Soc. Am., 64, Suppl. 1:587.Google Scholar
  20. Norris, K. S., Prescott, J. H., Asa-Dorian, P. V., and Perkin, P., 1961, Experimental demonstration of echolocation behavior in the porpoise Tursiops truncatus (Montagu), Biol. Bull., 120:163.CrossRefGoogle Scholar
  21. Norris, K. S., and Evans, W. E., 1966, Directionality of echolocation clicks in the rough-tooth porpoise, Steno bredanensis (Lesson) in: “Marine Bioacoustics”, W. N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  22. Norris, K. S., Evans, W. E., and Turner, R. N., 1967, Echolocation in an Atlantic bottlenose porpoise during discrimination, in: “Proc. Symp. Animal Sonar Systems: Biology and Bionics”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas, France.Google Scholar
  23. Norris, K. S., Dormer, K. J., Pegg, J., and Liese, G. J., 1971, The mechanisms of sound production and air recycling in porpoises: a preliminary report, in: “Proc. 8th Annual Cong. Biol. Sonar and Diving Mammals”.Google Scholar
  24. Norris, K. S., and Harvey, G. W., 1974, Sound transmission in the porpoise head, J. Acoust. Soc. Am., 56:659.PubMedCrossRefGoogle Scholar
  25. Romanenko, Y. V., 1973, Investigating generation of echolocation pulses in dolphins, Zool. Zh., 11:1698, JPRS 61553.Google Scholar
  26. Romanenko, Y. V., 1974, Physical fundamentals of bioacoustics, Fizicheskiye Osnovy Bioakustik, JPRS 63923, Moscow.Google Scholar
  27. Schevill, W. E., and Watkins, W. A., 1966, Sound structure and directionality in Orcinus (Killer Whale), Zoologica, 51:71.Google Scholar
  28. Schusterman, R. J., Kersting, D. A., and Au, W. W. L., 1979, Stimulus control of echolocation pulses in Tursiops truncatus, this volume.Google Scholar
  29. Thompson, R. K. R., and Herman, L. M., 1975, Underwater frequency discrimination in the bottlenose dolphin (1–140 kHz) and human (1–8 kHz), J. Acoust. Soc. Am., 57:943.PubMedCrossRefGoogle Scholar
  30. Urick, R., 1967, “Principle of Underwater Sound”, McGraw-Hill, New York.Google Scholar
  31. Wood, F. G., 1964, “Marine Bioacoustics”, W. N. Tavolga, ed., Perg-amon Press, New York.Google Scholar
  32. Woodward, P. M., 1953, “Probability and Information Theory with Applications to Radar”, Pergamon Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Whitlow W. L. Au
    • 1
  1. 1.Naval Ocean Systems CenterKailuaUSA

Personalised recommendations