Advertisement

Role of Nucleic Acids in Brain Development

  • A. Giuditta
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 13)

Abstract

The aim of this article is to provide a survey of the experimental findings which relate to the role of nucleic acids in brain development, with no pretence at a complete coverage, but also to present some of the evidence obtained with comparable systems wherever this may by useful to illustrate a concept or a possible mechanism. The metabolic behaviour of nucleic acids is at the core of the theory which attempts to explain development in terms of gene action and of its control (repression and derepression) in strictly ordered patterns in space and time. To provide even a cursory appreciation of the complexities which this mechanism is called upon to explain, we will start with a brief description of the main categories of biological events which occur during the growth of the nervous system. This will be also useful in discussing the limits of this theory, at least in its current formulation, and the possible other factors which may contribute to the molding of growing nerve tissues.

Keywords

Nerve Growth Factor Brain Development Matrix Cell Orotic Acid Embryonic Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Altman, J. in Handbook of Neurochem., vol. 2, p. 137 (Ed. A. Lajtha) Plenum Press (1969).Google Scholar
  2. (2).
    Eceles, J. C. Proc. Natl. Acad. Sci. US 66:294 (1970).CrossRefGoogle Scholar
  3. (3).
    Caley, D. W. and Maxwell, D.S. J. Comp. Neurol. 133:17 (1968).CrossRefGoogle Scholar
  4. (4).
    Wechsler, A. and Keller, K. Progr.Brain.Res.26:93 (1967CrossRefGoogle Scholar
  5. (5).
    Mori, S., and Leblond, O.P. J. Comp.Neurol.139:1 (1970).PubMedCrossRefGoogle Scholar
  6. (6).
    McIlwain, H. in Biochemistry and the Central Nervous System, 3rd Ed., Churchill (1966).Google Scholar
  7. (7).
    Schonbach, J. et al. J. Comp. Neurol. 134:21 (1968).PubMedCrossRefGoogle Scholar
  8. (8).
    Sperry, R.W. Proc.Natl.Acad.Sci.US 50:703 (1963).CrossRefGoogle Scholar
  9. (9).
    Hess, A. Biol. Rev. 32:231 (1957).CrossRefGoogle Scholar
  10. (10).
    Hughes, A.F.W. Aspects of neural ontogeny, Logos Press (1968).Google Scholar
  11. (11).
    Trinkaus, J.P. Cells into Organs, Prentice Hall (1969).Google Scholar
  12. (12).
    Saunders, J.W. Science 154:604 (1966).PubMedCrossRefGoogle Scholar
  13. (13).
    Lents, R.D., and Lapham, L.W. J.Neurochem.16:379 (1969).CrossRefGoogle Scholar
  14. (14).
    Giuditta, A. et al. Brain Res., in press.Google Scholar
  15. (15).
    Sandritter, W. et al. Z. Zellforsch. 80:145 (1967).PubMedCrossRefGoogle Scholar
  16. (16).
    Mandel, P. et al. in Comparative Neurochemistry (Ed. D. Richter) p.149, Pergamon Press (1964).Google Scholar
  17. (17).
    Rappoport, D.A. et al. in Handbook of Neurochemistry vol.1, p.101 (Ed. A. Lajtha) Plenum Press (1969)Google Scholar
  18. (18).
    Dingman, C.W., and Sporn, M.B. J. Biol. Chem 239:3483 (1964).Google Scholar
  19. (19).
    Kurtz, D.I., and Sinex, P.M. Biochim. Biophys. Acta 145:840 (1967).PubMedGoogle Scholar
  20. (20).
    Margolis, F.L. J. Neurochem. 26:447 (1969).CrossRefGoogle Scholar
  21. (21).
    Mori, K. J. Neurochem. 27:835 (1970).CrossRefGoogle Scholar
  22. (22).
    Hughes, A. J. embryol. exper. Morphol. 3:305 (1955).Google Scholar
  23. (23).
    Hughes, A., and Flexner, L.B. J. Anat. 90:386 (1956).PubMedGoogle Scholar
  24. (24).
    Hyden, H. Acta Physiol. Scand. 6,Suppl.17:1 (1943).Google Scholar
  25. (25).
    Sensenbrenner, M., and Mandel, P. Z.Zellforsch. 82:65 (1967).PubMedCrossRefGoogle Scholar
  26. (26).
    Adams, D.H., and Fox, M.E. Brain Res. 21:157 (1969).CrossRefGoogle Scholar
  27. (27).
    Dellweg, H. et al. J. Neurochem.15:1109 (1968).PubMedCrossRefGoogle Scholar
  28. (28).
    Yamagami, S., and Mori, K. J.Neurochem. 17:721 (1970).PubMedCrossRefGoogle Scholar
  29. (29).
    Bernsohn, J., and Norgello, H. Proc. Soc. Exp. Biol. Med. 122:22 (1966).PubMedGoogle Scholar
  30. (30).
    Ringborg, U. Brain Res. 2:296 (1966).PubMedCrossRefGoogle Scholar
  31. (31).
    Sharma, S.K., and Singh, U.N. J.Neurochem. 17:305 (1970).PubMedCrossRefGoogle Scholar
  32. (32).
    Adams, D.H. Biochem, J. 98:636 (1966).Google Scholar
  33. (33).
    Brown, D.D., and Gurdon, J.B. Proc. Natl. Acad. Sci.US 51:669 (1964).CrossRefGoogle Scholar
  34. (34).
    Vesco, C., and Giuditta, A. Biochim. Biophys. Acta 112:385 (1967).Google Scholar
  35. (35).
    Caldarera, C.M. et al. J. Neurochem. 16:309 (1969).PubMedCrossRefGoogle Scholar
  36. (36).
    Johnson, T.C. J. Neurochem. 14:1075 (1967).PubMedCrossRefGoogle Scholar
  37. (37).
    Orrego, F. J. Neurochem. 14:851 (1967).CrossRefGoogle Scholar
  38. (38).
    Guroff, G. et al. J. Neurochem. 15:489 (1968).PubMedCrossRefGoogle Scholar
  39. (39).
    Barondes, S.H. J. Neurochem. 11:663 (1964).PubMedCrossRefGoogle Scholar
  40. (40).
    Bondy, S.C., and Waelsch, H. Life Sci. 3:633 (1964).PubMedCrossRefGoogle Scholar
  41. (41).
    Moscona, A.A., and Kirk, D.L. Science 148:519 (1965).PubMedCrossRefGoogle Scholar
  42. (42).
    Brachet, J. in Comprehensive Biochemistry vol.28, p.23 Eds. M. Florkin and E.H. Stotz) Elsevier Publ.Co.(1967).Google Scholar
  43. (43).
    Kirk, D.L. Proc. Natl. Acad.Sci.54:1345 (1965).PubMedCrossRefGoogle Scholar
  44. (44).
    Piddington, R. Devel. Biol. 16:168 (1967).CrossRefGoogle Scholar
  45. (45).
    Krawiec, L. et al. Brain Res. 15:209 (1969).PubMedCrossRefGoogle Scholar
  46. (46).
    Smith, E.L. et al. Physiol.Rev. 50:159 (1970).PubMedGoogle Scholar
  47. (47).
    Ursprung, H., and Huang, R.C. Progr. Biophys. Mol. Biol. 17:151 (1967).CrossRefGoogle Scholar
  48. (48).
    Britten, R.J., and Davidson, E.H. Science 165:349 (1969).PubMedCrossRefGoogle Scholar
  49. (49).
    Scarano, E. Ann. Embryol. Morphog.,Suppl. 1:51 (1969).Google Scholar
  50. (50).
    Gurdon, J.B., and Woodland, H.R. Biol.Rev. 43:233 (1968).PubMedCrossRefGoogle Scholar
  51. (51).
    Davidson, E.H. et al. Proc. Natl. Acad. Sci.US 54:696 (1965).CrossRefGoogle Scholar
  52. (52).
    Crippa, M. Nature in press.Google Scholar
  53. (53).
    Tocchini-Valentini, G.P., and Crippa, M. Cold Spring Harbor Symp. Quant. Biol. 35 (1970) in press.Google Scholar
  54. (54).
    Burgess, R.R. et al. Nature 221:43 (1969).PubMedCrossRefGoogle Scholar
  55. (55).
    Seeds, N.W. et al. Proc. Natl. Acad. Sci. US 65:160 (1970).CrossRefGoogle Scholar
  56. (56).
    Levi-Montalcini, R., and Angeletti, P. Phsyiol. Rev. 48:534 (1968).Google Scholar
  57. (57).
    Levi-Montalcini, R. et al. Brain Res. 12:54 (1969).PubMedCrossRefGoogle Scholar
  58. (58).
    Toschi, G. et al. J. Neurochem. 13:539 (1966).PubMedCrossRefGoogle Scholar
  59. (59).
    Riesen, A.H. in Prog. in Physiological Psychology p.117 Academic Press (1966).Google Scholar
  60. (60).
    Gyllenstein, L. et al. J.Comp.Neurol.126:463 (1966).CrossRefGoogle Scholar
  61. (61).
    White, R.H. J. Exp. Zool. 166:405 (1967).CrossRefGoogle Scholar
  62. (62).
    Hubel, D.H. Physiologist 10:17 (1967).PubMedGoogle Scholar
  63. (63).
    Margolis, F.L., and Bondy, S.C. Exp.Neurol.27:353 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • A. Giuditta
    • 1
  1. 1.International Institute of Genetics and BiophysicsNaplesItaly

Personalised recommendations