Skip to main content
  • 33 Accesses

Abstract

Mesocricetus auratus (n=21 + X + Y) The golden hamster is one of the more recent additions to the range of laboratory animals. The species is proving to be an excellent laboratory subject and, already, a number of mutant genes have been described. In toto, approximately 16 have been reported to date and those which have been utilized in linkage research are presented in Table 16.1. A general review of hamster genetics may be found in Robinson (1968).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • AWA, A., SASAKI, M. and TAKAYAMA, S. (1959). An in vitro study of the somatic chromosomes in several mammals. Jap. J. Zool., 12, 257–265.

    Google Scholar 

  • EMMONS, L. R. and HUSTED, L. (1962). The sex bivalent of the golden hamster. J. Hered., 53, 227–232.

    Google Scholar 

  • HUSTED, L., HOPKINS, J. T. and MOORE, M. B. (1945). The X bivalent of the golden hamster. J. Hered., 36, 93–96.

    Google Scholar 

  • JORDAN, M. (1959). Les heterochromosomes chez le golden hamster (Mesocricetus auratus). Folia Biol. (Krakow), 7, 73–81.

    Google Scholar 

  • KOLLER, P. C. (1938). The genetical and mechanical properties of the sex chromosomes. IV, The golden hamster. J. Genet, 36, 177–195.

    Article  Google Scholar 

  • LEHMAN, J. M., MACPHERSON, I. and MOORHEAD, P. S. (1963). Karyotype of the Syrian hamster. J. Nat. Cancer Inst., 31, 639–650.

    PubMed  CAS  Google Scholar 

  • MAGALHAES, H. (1954). Mottle-white, a sex-linked lethal mutation in the golden hamster. Anat. Rec., 120, 752.

    Google Scholar 

  • MATTHEY, R. (1951). Chromosomes de Muridae. Experientia, 7, 340–341.

    Article  PubMed  CAS  Google Scholar 

  • MATTHEY, R. (1952). Chromosomes de Muridae (Microtinae et Cricetinae). Chromosoma, 5, 113–138.

    Article  PubMed  CAS  Google Scholar 

  • NIXON, C. W. and CONNELLY, M. E. (1968). Hind leg paralysis: a new sex-linked mutation in the Syrian hamster. J. Hered., 59, 276–278.

    PubMed  CAS  Google Scholar 

  • OHNO, S., BECAK, W. and BECAK, M. L. (1964). X-autosome ratio and the behaviour pattern of individual X chromosomes in placental mammals. Chromosoma, 15, 14–30.

    Article  PubMed  CAS  Google Scholar 

  • OHNO, S. and WEILER, C. (1961). Sex chromosome behaviour pattern in germ and somatic cells of Mesocricetus auratus. Chromosoma, 12, 362–373.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1958). Genetic studies of the Syrian hamster. I. The mutant genes cream, ruby-eye and piebald. J. Genet., 56, 85–102.

    Article  Google Scholar 

  • ROBINSON, R. (1959a). Genetic studies of the Syrian hamster. II. Partial albinism. Heredity, 13, 165–177.

    Article  Google Scholar 

  • ROBINSON, R. (1959b). Genetic studies of the Syrian hamster. III. Variation of dermal pigmentation. Genetica, 30, 393–411.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1959c). Genetic independency of four mutants in the Syrian hamster. Nature, 183, 125–126.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1962a). Genetic studies of the Syrian hamster. IV. Brown pigmentation. Genetica, 33, 81–87.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1962b). Genetic studies of the Syrian hamster. V. White band. Heredity, 17, 477–486.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1964). Genetic studies of the Syrian hamster. VI. Anophthalmic white. Genetica, 35, 241–250.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1966). Sex-linked yellow in the Syrian hamster. Nature, 212, 824–825.

    Article  PubMed  CAS  Google Scholar 

  • ROBINSON, R. (1968). Genetics and karyology. In Hoffman, R. A., Robinson, P. F. and Magalhaes, H. (Editors). The golden hamster: its biology and use in medical research. Ames: Iowa State University Press.

    Google Scholar 

  • ROBINSON, R. (1971). Genetic studies of the Syrian hamster. VII. Independence data. Heredity, 26, 65–71.

    Article  PubMed  CAS  Google Scholar 

  • SACHS, L. (1952). Polyploid evolution and mammalian chromosomes. Heredity, 6, 357–364.

    Article  Google Scholar 

  • SAKSELA, E. and MOORHEAD, P. S. (1962). Enhancement of secondary constrictions and the heterochromatic X in human cells. Cytogenetics, 1, 225–244.

    Article  PubMed  CAS  Google Scholar 

  • SENIN, V. M. and POGOSIANTZ, E. E. (1967). On the normal karyotype of golden hamster. Genetika (Mosk.), 1967 (4), 81–88.

    Google Scholar 

  • SHEAFFER, C. I. (1955). The X bivalent of the golden hamster. Virginia J. Sci., 6, 46–52.

    Google Scholar 

  • WALKNOWSKA, J. (1964). The chromosomes in ontogenesis of golden hamster. Folia Biol (Krakow), 12, 321–346.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robinson, R. (1972). Golden Hamster. In: Gene Mapping in Laboratory Mammals Part B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7227-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7227-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7229-5

  • Online ISBN: 978-1-4684-7227-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics