Advertisement

Collisionless Multiphoton Dissociation of SF6: A Statistical Thermodynamic Process

  • Eli Yablonovitch
Part of the Studies in the Natural Sciences book series (SNS, volume 13)

Abstract

An experiment, which combines picosecond CO2 laser pulses with opto-acoustic techniques, proves that the collisionles s multiphoton dissociation SF6 is a statistical thermodynamic process. The RRKM theory of unimolecular reactions, familiar to most physical chemists, provides a quantitative explanation of the dissociation effect. The reaction rate is primarily limited by transitions in the quasi continuum rather than by the anharmonicity of the first few discrete levels.

Keywords

Oscillator Strength Ultrashort Pulse Discrete Level Vibrational Temperature Good Quantitative Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. R. Isenor and M. C. Richardson, Appl. Phys. Lett. 18, 225 (1971).ADSGoogle Scholar
  2. 2.
    R. V. Ambartsumyan, V. S. Letokhov, E. A. Ryabov and N. V. Chekalin, JETP Lett. 20, 273 (1974).ADSGoogle Scholar
  3. J. L. Lyman, R. J. Jensen, J. Rink, C. P. Robinson and S. D. Rockwood, Appl. Phys. Lett. 27, 87 (1975).ADSCrossRefGoogle Scholar
  4. 3.
    Proceedings of the Nordf.jord Conference on Tunable Lasers and Applications, ed. by A. M. Mooradian (Springer-Verlag, 1976).Google Scholar
  5. 4.
    See the article by R. V. Ambartsumyan in Ref. 3.Google Scholar
  6. 5.
    See the article by Kompa in Ref. 3.Google Scholar
  7. 6.
    See the article by N. Bloembergen, C. D. Contrell and D. M. Larsen in Ref. 3.Google Scholar
  8. 7.
    C. D. Cantrell and H. W. Galbraith, Opt. Comm. 18, 513 (1976).ADSCrossRefGoogle Scholar
  9. 8.
    S. Mukamel and J. Jortner, Chem. Phys. Lett. 40, 150 (1976).ADSCrossRefGoogle Scholar
  10. 9.
    R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics , (Wiley, New York, 1969).Google Scholar
  11. 10.
    E. Merzbacher, Quantum Mechanics, (Wiley, New York, 1961).MATHGoogle Scholar
  12. 11.
    P. Kolodner, C. Winterfeld and E. Yablonovitch, Opt. Comm. to be published.Google Scholar
  13. 12.
    N. Bloembergen, Opt. Comm. 15, 416 (1975).ADSCrossRefGoogle Scholar
  14. 13.
    H. S. Kwok and E. Yablonovitch, Rev. Sci. Instrum. 46, 8l4 (l975).CrossRefGoogle Scholar
  15. 14.
    E. Yablonovitch and J. Goldhar, Appl. Phys. Lett. 25, 580 (1974).ADSCrossRefGoogle Scholar
  16. 15.
    W. H. Louisell, Quantum Statistical Properties of Radiation, (Wiley, New York, 1973).Google Scholar
  17. 16.
    J. D. Rynbrandt and B. S. Rabinovitch, J. Phys. Chem. 75, 2164 (1971).CrossRefGoogle Scholar
  18. 17.
    P. J. Robinson and K. A. Holbrook, Uni-Molecular Reactions (Wiley, New York, 1972).Google Scholar
  19. 18.
    M. J. Coggiola, P. A. Schulz, Y. T. Lee and Y. R. Shen, Phys. Rev. Lett. 38, 17 (1977).ADSCrossRefGoogle Scholar
  20. 19.
    V. N. Bagratashvili, I. N. Knyazev, V. S. Letokhov and V. V. Lobko, Opt. Comm. 18, 525 (1976).ADSCrossRefGoogle Scholar
  21. 20.
    The departure from RRKM theory observed by D. F. Dever and E. Grunrwald, J. Am. Chem. Soc. 98, 5055 (1976) was probably due to the fraction, f, of molecules which were unable to overcome the “anharmonicity barrier”. A similar departure would be observed here if <n’> rather than <n’> were used to determine the vibrational temperature.CrossRefGoogle Scholar
  22. 21.
    R. V. Ambartsumyan, N. P. Fuzikov, Yu. A. Gorokhov, V. S. Letokhov, G. N. Marakhov and A. A. Puretzky, Optics Comm. 18, 517 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Eli Yablonovitch
    • 1
  1. 1.Division of Engineering and Applied PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations