Skip to main content

Part of the book series: Studies in the Natural Sciences ((SNS,volume 13))

Abstract

In the last decade we have experienced a conceptual shift in our view of turbulence. For flows with strong velocity shears, near boundaries, density gradients, magnetic fields or other organizing characteristics, many now feel that the spectral or wave-number space description has inhibited fundamental progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abernathy, F. H. and Kronauer, R. E. The Formation of Vortex Streets, J. Fluid Mech. 13, 1, (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Achenbach, E. Experiments on Flov Past Spheres at Very High Reynolds Numbers. J. Fluid Mech. 54, 565–575, (1972).

    Article  ADS  Google Scholar 

  3. Achenbach, E. Vortex Shedding from Spheres. J. Fluid Mech. 62, 209–221, (1974)

    Article  ADS  Google Scholar 

  4. Ahlborn, F. Uber den Mechanismus des hydrodynamischen Widerstandes, — Hamburg, (1902).

    Google Scholar 

  5. Bailey, A.B. Observations of Sphere Wakes Over a Wide Range of Velocities and Ambient Pressures. Arnold Research Organization, Inc. Report AEDC-TR-68–112, (1968).

    Google Scholar 

  6. Basset, A.B. 1888. A Treatise or Hydrodynamics. Dover, 1961.

    Google Scholar 

  7. Batchelor, G.K. Homogeneous Turbulence, Cambridge University Press (1953).

    MATH  Google Scholar 

  8. Bearman, P.W. On Vortex Shedding From A Circular Cylinder in the Critical Reynolds Number Regime. J. Fluid Mech. 37, 577, (1969).

    Article  ADS  Google Scholar 

  9. Beavers, G.S. and Wilson, T.A. Vortex Growth in Jets. J. Fluid Mech. 44, 97, (1970).

    Article  ADS  Google Scholar 

  10. Benard, H. Formation de Centres de Giration a l’arriére d’un Obstacle en Mouvement, Comp. Rend 147, 839, (1908).

    Google Scholar 

  11. Berger, E. and Wille, R. Periodic Flow Phenomena, Ann. Rev. Fluid Mech. 4, 313, (1972).

    Article  ADS  Google Scholar 

  12. Berk, H.L. and Roberts, K.V. The Water-bag Model. Methods of Computational Physics, Plasma Physics, Vol. 9, 88–135, (1970).

    Google Scholar 

  13. Betchov, R. and Criminale, W.O. Stability of Parallel Flows, Academic Press, New York, (1967).

    Google Scholar 

  14. Brovand, F.K. and Weidman, P.D. Large Scales in the Developing Mixing Layer. J. Fluid Mech. 76, 127–144, (1976).

    Article  ADS  Google Scholar 

  15. Brown, G. L. and Roshko, A. On Density Effects and Large Structure in Turbulent Mixing Layers. J. Fluid Mech. 64, 775–816, (1974)

    Article  ADS  Google Scholar 

  16. Chorin, A. J. Numerical Study of Slightly Viscous Flow. J. Gluid Mech. 57, 785–796, (1973).

    Article  MathSciNet  ADS  Google Scholar 

  17. Christiansen, J. P. Numerical Simulation of Hydrodynamics “by the Method of Point Vortices. J. Comp. Physics. 13, 363–379, (1973).

    Article  ADS  MATH  Google Scholar 

  18. Christiansen, J.P. and Zabusky, N.J. Instability Coalesence and Fission of Finite-Area Vortex Structures. J. Fluid Mech. 61, 219–243, (1973).

    Article  ADS  MATH  Google Scholar 

  19. Davies, P.O.A.L. and Yule, A.J. Coherent Structures in Turbulence. J. Fluid Mech. 69, 513–537, (1975).

    Article  ADS  MATH  Google Scholar 

  20. Deem, G.S. The Origin of Cusped Waves in Layered Fluids. J. Fluid Mech., to be published. (1977).

    Google Scholar 

  21. Durgin, W.W. and Karlsson, S.K.F. On the Phenomenon of Vortex Street Breakdown. J. Fluid Mech. 48, 507, (1971).

    Article  ADS  Google Scholar 

  22. Fetter, A.L. Vortices and Ions in Helium. The Physics of Liquid and Solid Helium, eds. K.H. Bennemann and J.B. Ketterson. J. Wiley and Sons. (1970).

    Google Scholar 

  23. Frankel, L.E. Examples of Steady Vortex Rings of Small Cross-Section in an Ideal Fluid. J. Fluid Mech. 51, 119, (1972).

    Article  ADS  Google Scholar 

  24. Fromm, J.E. and Harlow, F.H. Numerical Solution of the Problem of Vortex Street Development, Phys. Fluids 6, 975, (1963).

    Article  ADS  Google Scholar 

  25. Goldstine, H.H. and Von Neumann, J. “On the Principles of Large Scale Computing Machines”, in CollectedWorks of John von Neumann, ed. A. Taub, Vol. 5, pp. 1–32, Macmillan, New York, 1963. The material in this paper was first given as a talk on May 15, 1946. Also see: “Recent Theories in Turbulence”, in Collected Works of John von Neumann ed. A. Taub, Vol. 6, pp. 437–472. This paper was issued as a report in 1949.

    Google Scholar 

  26. Griffin, O.M. and Votaw, C.W. The Vortex Street in the Wake of a Vibrating Cylinder. J. Fluid Mech. 51, 31, (1972).

    Article  ADS  Google Scholar 

  27. Griffin, O.M. and Ramberg, S.E. The Vortex-Street Wakes of Vibrating Cylinders. J. Fluid Mech. 66 , 553–578, (1974).

    Google Scholar 

  28. Hama, F.R. Three-Dimensional Vortex Pattern Behind a Circular Cylinder, J. Aerosp. Sci. 24, 156, (1957).

    Google Scholar 

  29. Hama, F.R. Streaklines in a Perturbed Shear Flow. Phys. Fluids 5, 644, (1962).

    Article  ADS  MATH  Google Scholar 

  30. Hama, F.R. Progressive Deformation of a Perturbed Line Vortex Filament. Phys. Fluids 6, 526, (1963).

    Article  ADS  MATH  Google Scholar 

  31. Hardin, R.H., Deem, G.S., Tappert, F.D. and Zabusky, N.J. Visualization of Properties of the Two-Dimen-sional Navier-Stokes Equation. Unpublished computer generated film produced at Bell Laboratories, Whippany, N.J. 1971.

    Google Scholar 

  32. Hasimoto, H. A Soliton on a Vortex Filament. J. Fluid Mech. 51, 477–485, (1972).

    Article  ADS  MATH  Google Scholar 

  33. Kochin, N.E., Compt. Rend. (Doklady) de l’Acadamie des Sciences, l’sssr 24, 18–22 (1939).

    Google Scholar 

  34. Kochin, N.E., Kiebel, I.A. and Roze, N.U. Theoretical Hydromechanics, Interscience, (1964).

    Google Scholar 

  35. Lamb, H. Hydrodynamics, Cambridge, University Press, 6th ed. (1932).

    MATH  Google Scholar 

  36. Leonard, A. Proc . of the IVth Int. Conf. on Numerical Methods in Fluid Dynamics, ed. R. D. Richtmyer, P. 2U5. Springer Verlag, (1975).

    Google Scholar 

  37. Leonard, A. Simulation of Three-Dimensional Separated Flows with Vortex Filaments. Proc. of the Vth Int. Conf. on Numerical Fluid Dynamic s (1976). Lecture Notes in Physics, ed. R.D. Richtmyer, Springer Verlag, (1977).

    Google Scholar 

  38. Leslie, D.C. Developments in the Theory of Turbulence. Clarendon Press, Oxford, (1973).

    MATH  Google Scholar 

  39. Magarvey, R.H. and MacLatchy, C.S. Vortices in Sphere Wakes. Cand. J. Phys. 43., 1649–1656, (1965).

    Article  ADS  Google Scholar 

  40. Miura, A. and Sato, T. Theory of Vortex Nutation and Amplitude Oscillation in an Inviscid Shear Layer. Submitted to J. Fluid MEch. (1977).

    Google Scholar 

  41. Moffatt, H.K. The Degree of Knottedness of Tangled Vortex Lines. J. Fluid Mech. 35, 117–129, (1969).

    Article  ADS  MATH  Google Scholar 

  42. Montgomery, D. Individual and collaborative papers with G. Joyce, G. Knorr, Y. Salu and C.R. Seyler, Jr. in Phys. Rev. Letters, J. Plasma Phys., Phys. Fluids, 1973–1977. (1977).

    Google Scholar 

  43. Morikawa, G.K. and Swenson, E.V. Interacting Motion of Rectilinear Geostrophic Vortices. Phys. Fluids 14, 1058–1073, (1971).

    Article  ADS  Google Scholar 

  44. Morkovin, M.V. Flow Around a Circular Cylinder: A Kaleidoscope of Challenging Fluid Phenomena. ASME Symposium on Fully Separated Flows , pp. 102–118. (A Fluids ENg. Div. Conference). (1964).

    Google Scholar 

  45. Norbury, J. A Steady Vortex Ring Close to Hills Spherical Vortex. Proc. Camb. Phil. Soc. 72, 253, (1973).

    Article  MathSciNet  ADS  Google Scholar 

  46. Norbury, J. J. Fluid Mech. 57, 417–431, (1973).

    Article  ADS  MATH  Google Scholar 

  47. Onsager, L. Nuovo Cimento Suppl. 6, 279. (Supplement No. 2, Series 9). (1949).

    Article  MathSciNet  Google Scholar 

  48. Orszag, S.A. Lecture Notes on the Statistical Theory of Turbulence. Les Houches Lectures, 1973, ed. R. Balian North-Holland, (1976).

    Google Scholar 

  49. Papailiou, D.D. and Lykoudis, P.S. Turbulent Vortex Streets and the Entrainment Mechanism of the Turbulent Wake. J. Fluid Mech. 62, 11–31, (1974)

    Article  ADS  MATH  Google Scholar 

  50. Patnaik, P.C., Sherman, F.S. and Corcos, G.M. A Numerical Simulation of Kelvin-Helmholtz Waves of Finite Amplitude. J. Fluid Mech. 73, 215, (1976).

    Article  ADS  MATH  Google Scholar 

  51. Pekeris, C.L. Stationary Spherical Vortices in a Perfect Fluid. Proc . Nat. Acad. Sci. 69, 2460–2462, (1972).

    Article  ADS  MATH  Google Scholar 

  52. Phillips, O.M. The Dynamics of the Upper Ocean. Cambridge University Press, (1969.

    Google Scholar 

  53. Prandtl, L. The Generation of Vortices...London. (1927).

    Google Scholar 

  54. Roberts, K.V. and Christiansen, J.P. Topics in Computational Fluid Mechanics. Compt. Phys. Comm. 3, (Suppl), 14, (1972).

    Article  ADS  Google Scholar 

  55. Roberts, P.H. and Donnelly, R.J. Superfluid Mechanics. Ann. Rev. Fluid Mech. 6, 179–225, (1974)

    Article  ADS  Google Scholar 

  56. Rosenhead, L. Vortex Systems in Wakes. Adv. in Appl. Mech. 3, 185 (1953).

    Article  MATH  Google Scholar 

  57. Roshko, A. Structure of Turbulent Shear Flows. AIAA J. 14, 1349–1357, (1976).

    Article  ADS  Google Scholar 

  58. Saffman, P.G. Lectures on Homogeneous Isotropic Turbulence, in Topics in Nonlinear Physics, ed. N.J. Zabusky, pp. 485–614, Springer-Verlag. Saffman advocates a physical-space approach to very high-Re-turbulence, pp. 567–581, (1968).

    Chapter  Google Scholar 

  59. Saffman, P.G. Structure of Turbulent Line Vortices, Phys. Fluids 16, 1181–1188, (1973).

    Article  ADS  MATH  Google Scholar 

  60. Saffman, P.G. On the Formation of Vortex Rings. Studies in Appl. Math. 54, 261–268, (1975).

    MathSciNet  ADS  MATH  Google Scholar 

  61. Sato, H. and Kuriki, K. The Mechanism of Transition in the Wake of a Thin Flat Plate Placed Parallel to a Uniform Flow. J. Fluid Mech. 11, 321, (1961).

    Article  ADS  MATH  Google Scholar 

  62. Strouhal, V. Uber eine besondere Art der Tonerregung. Ann. Phys. Chem. 5, 2l6, (1878).

    Google Scholar 

  63. Stuart, J. T. Nonlinear Stability Theory. Ann. Rev. Fluid Mech. 3, 347, (1971).

    Article  ADS  Google Scholar 

  64. Taneda, S. Experimental Investigation of the Wakes Behind Cylinders and Plates at low Reynolds Numbers. J. Phys. Soc. Japan 11, 302, (1956).

    Article  ADS  Google Scholar 

  65. Taneda, S. Oscillations of the Wake Behind a Flat Plate Parallel to the Flow. J. Phys. Soc. Japan 13, 418, (1958).

    Article  ADS  Google Scholar 

  66. Taneda, S. Downstream Development of Wakes Behind Cylinders. J. Phys. Soc. Japan, 14, 834, (1959).

    ADS  Google Scholar 

  67. Taneda, S. Experimental Investigation of Vortex Streets. J. Phys. Soc. Japan, 20, 1744 (1965).

    Article  ADS  Google Scholar 

  68. Thorpe, S.A. Turbulence in Stably Stratified Fluids. Boundary Layer Meterology 5, 95, (1973).

    Article  ADS  Google Scholar 

  69. Thorpe, S.A. Experiments on Instability and Turbulence in a Stratified Shear Flow. J. Fluid Mech. 61, 731, (1973).

    Article  ADS  Google Scholar 

  70. Townsend, A.A. The Structure of Turbulent Shear Flow. Cambridge University Press, (1956).

    MATH  Google Scholar 

  71. Ulam, S.M. A Collection of Mathematical Problems, Wiley, (Interscience), (1960).

    MATH  Google Scholar 

  72. von Karman, Th. “Über der Mechanisms des Widerstands, den ein bewegter Körper in einer Flüssigkeit erfährt , Gottinger Nachrichten, Math. Phys. Kl. 509–519 and 547–556, (1911).

    Google Scholar 

  73. von Karman, Th. and Rubach, H. Über den Mechanisms des Flüssigkeits -. und Luftwiderstands Phys. Zeitschrift 13, 49–89, (1912).

    MATH  Google Scholar 

  74. Widnall, S.E. The Structure and Dynamics of Vortex Filaments. Ann. Rev. Fluid Mech. 7, 141–165 (1975)

    Article  ADS  Google Scholar 

  75. Wille, R. Karman Vortex Street, Adv. in Appl. Mech. 6, 237, (1960).

    Google Scholar 

  76. Winant, C.D. and Browand, F.K. Vortex Pairing: The Mechanism of Turbulent Mixing Layer Growth at Moderate Reynolds Number. J. Fluid Mech. 63, 237, (1974)

    Article  ADS  Google Scholar 

  77. Woods, J.D. and Wiley, R.L. Billow Turbulence and Ocean Microstructure. Deep-sea Res. 19, 87, (1972).

    Google Scholar 

  78. Zabusky, N.J. A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction Nonlinear Partial Differential Equations, ed. W. Ames, p. 223, Academic Press, Inc. (1967).

    Google Scholar 

  79. Zabusky, N.J. and Deem, G.S. Dynamical Evolution of Two-Dimensional Unstable Shear Flows. J. Fluid Mech. 47, 353–379, (1971),

    Article  ADS  MATH  Google Scholar 

  80. Zabusky, N.J. and Roberts, K.V. Contour Dynamics for Incompressible Dissipationless Fluids, I. Algorithms, (preprint), (1972).

    Google Scholar 

  81. Zabusky, N.J. Solitons and Energy Transport in Nonlinear Lattices. Comp. Phys. Comm. 5, 1–10, (1973).

    Article  ADS  Google Scholar 

  82. Zaroodny, S.J. and Greenberg, M.D. On a Vortex Street Approach to the Numerical Calculation of Water Waves. J. Comp. Phys. 11, 440–446 (1973).

    Article  ADS  MATH  Google Scholar 

  83. Zdravkovich, M.M. Smoke Observations on the Formation of Karman Vortex Street, J. Fluid Mech. 37, 491 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Zabusky, N.J. (1977). Coherent Structures in Fluid Dynamics. In: Perlmutter, A., Scott, L.F. (eds) The Significance of Nonlinearity in the Natural Sciences. Studies in the Natural Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7224-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7224-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7226-4

  • Online ISBN: 978-1-4684-7224-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics