Advertisement

Path Integral Quantization of Solitons

  • A. Jevicki
Part of the Studies in the Natural Sciences book series (SNS, volume 13)

Abstract

A review of some recent work on the collective coordinate approach to perturbation expansion about soliton solutions is presented. Consistent formulation of the method in framework of the Feynman path integral quantization procedure is described. As an illustrative application we discuss in detail a perturbation expansion for scattering of solitons.

Keywords

Soliton Solution Feynman Rule Perturbation Expansion Subsidiary Condition Path Integral Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D 10, 4114 (1974);ADSCrossRefGoogle Scholar
  2. 1A.
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D 10, 4130 (1974).ADSCrossRefGoogle Scholar
  3. 2.
    J. L. Gervais and B. Sakita, Phys. Rev. D 11, 2943 (1975)ADSCrossRefGoogle Scholar
  4. 2a.
    J. L. Gervais, A. Jevicki and B. Sakita, Phys. Rev. D. 12, 1038 (1975).ADSCrossRefGoogle Scholar
  5. 3.
    For an entirely different approach see: J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975).ADSCrossRefGoogle Scholar
  6. 4.
    C. Callan and D. Gross, Nucl. Phys. B 93, 29 (1975).ADSCrossRefGoogle Scholar
  7. 5.
    L. D. Faddeev, V. E. Korepin and P. P. Kulish, JETP Lett. 21, 260 (1975).Google Scholar
  8. 6.
    J. L. Gervais, A. Jevicki and B. Sakita, Phys. Reports 23, 237 (1976);ADSCrossRefGoogle Scholar
  9. 6a.
    see also A. Hosoya and K. Kikkawa Nucl. Phys. B 101, 271 (1976).ADSCrossRefGoogle Scholar
  10. 7.
    J. L. Gervais and A. Jevicki, Nucl. Phys. B 110, 93 (1976).MathSciNetADSCrossRefGoogle Scholar
  11. 8.
    E. Tomboulis, Phys. Rev. D 12, 1678 (1975),ADSCrossRefGoogle Scholar
  12. 8a.
    N. Christ and T. D. Lee, Phys. Rev. D 12, 1606 (1975).MathSciNetADSCrossRefGoogle Scholar
  13. 9.
    J. L. Gervais and A. Jevicki, Nucl. Phys. B 110, 113 (1976);MathSciNetADSCrossRefGoogle Scholar
  14. 9a.
    for the discussion of N-soliton scattering see A. Jaeckel, Ecole Normal preprint (1976).Google Scholar
  15. 10.
    R. Jackiw and G. Woo, Phys. Rev. D 12, 1643 (1975).MathSciNetADSCrossRefGoogle Scholar
  16. 11.
    R. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D 11, 3424 (1975).MathSciNetADSCrossRefGoogle Scholar
  17. 12.
    V. C. Korepin, JETP Lett. 23, 224 (1976);Google Scholar
  18. 12a.
    for the “complex time” method see D. McLaughlin, J. Math. Phys. 13, 1099 (1972).MathSciNetADSCrossRefGoogle Scholar
  19. 13.
    A. Jevicki, Nucl. Phys. B 117, 365 (1976).ADSCrossRefGoogle Scholar
  20. 14.
    L. D. Faddeev and V. E. Korepin, Phys. Lett. 63B, 435 (1976); similar propagators appear also in the classical perturbation expansion for solitons developed by J. Keener and D. McLaughlin (preprint 1976).ADSGoogle Scholar
  21. 15.
    The only higher loop calculation performed so far is the two-loop correction to soliton mass in the Sine-Gordon theory; H. deVega, Nucl. Phys. B 115, 411 (1975).ADSCrossRefGoogle Scholar
  22. 16.
    G. ’t Hooft, Phys. Rev. D 14, 3432 (1976); A. Polyakov Nordita preprint (1976);ADSCrossRefGoogle Scholar
  23. 161.
    E. Brezin, J. C. Le Guillou and J. Zinn-Justin, Saclay preprint (1976).Google Scholar
  24. 17.
    A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Phys. Lett. 59B, 85 (1975).MathSciNetADSGoogle Scholar
  25. 18.
    J. L. Gervais and B. Sakita, CCNY preprint (1976).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. Jevicki
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations