Skip to main content

Theories and Conjectures on Membrane-Supported Waves and Patterns

  • Chapter
Book cover The Significance of Nonlinearity in the Natural Sciences

Part of the book series: Studies in the Natural Sciences ((SNS,volume 13))

  • 113 Accesses

Abstract

The work reported on in this symposium “by Deem and Kernevez (see also [2,3,15] and references therein) suggests an analogy between some biological membrane processes and packed bad catalytic reactors, well known and well studied in chemical engineering. The analogy is quite clear if one envisions the membrane as having imbedded within it an immobilized enzyme catalyst, and as allowing other reacting molecules and ions to migrate through it from one side to the other, or longitudinally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Aronson and H.F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation, in: Proceedings of the Tulane Program in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, No. 446, Springer, Berlin, 1975.

    Google Scholar 

  2. S.R. Caplan, A. Naparstek, and N.J. Zabusky, Chemical oscillations in a membrane, Nature 245, 364–366, (1973).

    Article  ADS  Google Scholar 

  3. M.C. Duban, G. Joly, J.P. Kernevez, and D. Thomas, Hysteresis, oscillations, and morphogenesis in immobilized enzyme systems (to appear)

    Google Scholar 

  4. B. Edelstein, Biochemical model with multiple steady states and hysteresis, J. Theor. Biol. 29, 57–62, (1970).

    Article  Google Scholar 

  5. P. Fife, Pattern formation in reacting and diffusing systems, J. Chem. Phys. 64, 554–564, (1976).

    Article  ADS  Google Scholar 

  6. P. Fife, Singular perturbation and wave front techniques in reaction-diffusion problems, Proc. AMS-SIAM Symposium on Asymptotic Methods and Singular Perturbations, New York, 1976.

    Google Scholar 

  7. P. Fife, Asymptotic analysis of reaction-diffusion wave fronts, Rocky Mountain J. of Mathematics, to appear.

    Google Scholar 

  8. P. Fife, Stationary patterns for reaction-diffusion equations, in: Papers on Nonlinear Diffusion, Proc. of NSF-CBMS Regional Conference on Nonlinear Diffusion, Research Notes in Mathematics, Pitman, London, to appear.

    Google Scholar 

  9. P. Fife and J.B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal. to appear. Announcements in Bull. Amer. Math. Soc. 81, 1075–1078, (1975).

    MathSciNet  Google Scholar 

  10. R.A. Fisher, The advance of advantageous genes, Ann. of Eugenics 7, 355–369, (1937).

    Google Scholar 

  11. E.D. Gilles, Reactor models, in: Proc. Fourth International Symposium on Chemical Reaction Engineering, Heidelberg, 1976, to appear.

    Google Scholar 

  12. B.C. Goodwin, Excitability and spatial order in membranes of developing systems, in: Faraday Symposia of The Chemical Society No.9, 1974.

    Google Scholar 

  13. H-S. Hahn, A. Nitzan, P. Ortoleva, and J. Ross, Threshold excitation, relaxation oscillation, and effect of noise in an enzyme reaction, Proc. Nat. Acad. Sci. USA 71, 4067–4071, (1974).

    Article  ADS  Google Scholar 

  14. B. Lübeck, Vergleich von kontinuierlichen Modellen zur Beschreibung des dynamischen Verhaltens von katalystischen Festbettreaktoren, Chem. Eng. Jour. 7, 29–40, (1974).

    Article  Google Scholar 

  15. A. Naparstek, D. Thomas, and S.R. Caplan, An ex-perimental enzyme-membrane oscillator, Biochimica et Biophysica Acta 323, 643–646, (1973).

    Article  Google Scholar 

  16. P. Ortoleva and J. Ross, Theory of propagation of discontinuities in kinetic systems with multiple time scales: Fronts, front multiplicities, and pulses, J. Chem. Phys. 63 3398–3408, (1975).

    Article  ADS  Google Scholar 

  17. G. Padberg and E. Wicke, Stabiles und instabiles Verhalten eines adiabatischen Rohrreaktors am Beispiel der katalytischen CO-Oxydation. Chem. Eng. Sci. 22, 1035–1051, (1967).

    Article  Google Scholar 

  18. W.H. Ray, Bifurcation phenomena in chemically reacting systems, in: Proc. Advanced Seminar on Applications of Bifurcation Theory, Math. Res. Center, U. Wisconsin, 1976, to appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Fife, P.C. (1977). Theories and Conjectures on Membrane-Supported Waves and Patterns. In: Perlmutter, A., Scott, L.F. (eds) The Significance of Nonlinearity in the Natural Sciences. Studies in the Natural Sciences, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7224-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7224-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7226-4

  • Online ISBN: 978-1-4684-7224-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics