Advertisement

Spatio-Temporal Structuration in Immobilized Enzyme Systems

  • J. P. Kernevez
  • M. C. Duban
  • C. Joly
  • D. Thomas
Part of the Studies in the Natural Sciences book series (SNS, volume 13)

Abstract

The aim of this paper is to describe the behavior of immobilized enzyme systems described by nonlinear partial differential equations. In these artificial membranes, interaction of diffusion and reaction gives rise to phenomena of biological significance, such as transport against the gradient of concentration, hysteresis, oscillations, or pattern formation. Similar qualitative behaviors can be observed in living cells: active transport, memory, biological clocks, morphogenesis. It will be shown hereafter that very simple enzyme systems can exhibit such behaviors.

Keywords

Pattern Formation Gluconic Acid Nonlinear Partial Differential Equation Representative Point Artificial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auchmuty J.F.G. and Nicolis G. “Dissipative Structures, Catastrophes, and Pattern Formation: A Bifurcation Analysis” Proc. Nat. Acad. Sc. USA, 71, 2748–2751, (1974).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Auchmuty J.F.G. and Nicolis G. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations I: Evolution and the Steady State Solutions” Bull. Math. Biol. 37, 323–365 (1975).MathSciNetMATHGoogle Scholar
  3. 3.
    Auchmuty J.F.G. and Nicholis G. “Bifurcation Analysis of Nonlinear Reaction-Diffusion Equations III: Chemical Oscillations” Bull. Math. Biol. 38, 325–350 (1976).MATHGoogle Scholar
  4. 4.
    Boa James A. “A Model Biochemical Reaction” PhD Thesis, California Institute of Technology, Pasadena, (1974).Google Scholar
  5. 5.
    Boa J.A. and Cohen D.S. “Bifurcation of Localized Disturbances in a Model Biochemical Reaction” Siam J. Appl. Math. 30, 123–135, N°1, (January 1976).MATHCrossRefGoogle Scholar
  6. 6.
    Boa J.A. “Multiple Steady States in a Model Biochemical Reaction” Studies in Applied Math., Vol. LIV, N°1, (March 1975).Google Scholar
  7. 7.
    Caplan S.R., Naparstek A., and Zabusky N.J. Nature, 245, 364 (1913).ADSCrossRefGoogle Scholar
  8. 8.
    Casten R.G. and Holland C.J. “instability Results for Reaction Diffusion Equations with Neumann Boundary Conditions” To appear J. Differential Equations.Google Scholar
  9. 9.
    Casten R.G. and Holland C.J. “Stability Properties of Solutions to Systems of Reaction-Diffusion Equations” To appear SIAM. J. on Applied Math.Google Scholar
  10. 10.
    Glansdorf P. and Prigogine I. “Thermodynamic Theory of Structure, Stability, and Fluctuations” Wiley Interscience, London (1971).Google Scholar
  11. 11.
    Fife P.C. “Pattern Formation in Reacting and Diffusing Systems” J. Chem. Phys. 64, 554–564 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    Fife P.C. and Mc Leod J.B. “The approach of Solutions of Nonlinear Diffusion Equations to Travelling and Wave solutions” Bulletin of the American Math. Soc., 81, N°6, 1076–1078 (Nov. 1975).Google Scholar
  13. 13.
    Fife P.C. “Stationary Patterns for Reaction-Diffusion Equations” MRC Technical Summary Report, pp. 1–50 (1976).Google Scholar
  14. 14.
    Fife P.C. “Singular Perturbations and Wave Front Techniques in Reaction Diffusion Problems” SIAM-AMS Proceedings. 10, 23–50 (1976).MathSciNetGoogle Scholar
  15. 15.
    Hardt S., A. Naparstek, L.A. Segel, and S.R. Caplan “Spatio-Temporal Structure Formation and Signal Propagation in a Homogeneous Enzymatic Membrane” pp.9–15 in “Analysis and Control of Immobolized Enzyme Systems” Ed. D. Thomas and J.P. Kernevez, North Holland (1976)Google Scholar
  16. 16.
    Herschkowitz Kaufman M. and Nicolis G. “Localized Spatial Structures and Nonlinear Chemical Waves in Dissipative Systems” J. Chem. Phys. 56, 1890–1895 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    Keller J.B. and Kogelman S. “Asymptotic Solutions of Initial Value Problems for Nonlinear Partial Differential Equations” SIAM J. Appl. Math. 18, 748–758, (1970).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Kernevez J.P. and Thomas D. “Numerical Analysis and Control of Some Biochemical Systems” Appl. Math, and Opt., 1, N°3, 222–285, (1975).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lefever R. and Prigogine I. “Symmetry Breaking Instabilities in Dissipative Systems II” J. Chem. Phys. 48, 1695–1700, (1968).ADSCrossRefGoogle Scholar
  20. 20.
    Lefever R. “Dissipative Structure in Reaction-Diffusion Systems” pp.17–39 in “Analysis and Control of Immobilized Enzyme Systems” Ed. D. Thomas and J.P. Kernevez, North Holland, (1976).Google Scholar
  21. 21.
    Matkowsky B.J. “A Simple Nonlinear Dynamic Stability Problem” Bull. Amer. Math. Soc. 76, 620–625, (1970).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Meurant G. and Saut J.C. “Bifurcation and Stability in a Chemical System” J. Math. Anal, and Appl. — to appearGoogle Scholar
  23. 23.
    Michaelis L., Menten M. “Die Kinetik der Invertinwirkung” Biochem. Z., 49, 333–369, (1913).Google Scholar
  24. 24.
    Naparstek A., Romette J.L., Kernevez J.P., and Thomas D. “Memory in Enzyme Membranes” Nature, 249, 490, (1974).ADSCrossRefGoogle Scholar
  25. 25.
    Nicolis G. “Mathematical Problems in Theoretical Biology” in “Nonlinear Problems in the Physical Sciences and Biology” Ed. I. Stakgold, DD. Joseph, D.H. Sattinger, Springer Lecture Notes in Mathematics, N°324, (1973).Google Scholar
  26. 26.
    Othmer H.G. and Scriven L.E. “instability and Dynamic Pattern in Cellular Networks” J. Theor. Biol. 32, 507–537 (1971).CrossRefGoogle Scholar
  27. 27.
    Othmer H.G. “Nonlinear Wave Propagation in Reacting Systems” Journal of Math. Biol. 2, 133–163, (1975).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Prigogine I., Nicolis G. and Babloyantz A. Physics Today, 25, 23, (1975).CrossRefGoogle Scholar
  29. 29.
    Sattinger D.H. “Topics in Stability and Bifurcation” Springer Lecture Notes in Mathematics N° 309, (1972).Google Scholar
  30. 30.
    Thomas D., Boudillon C., Broun G., and Kernevez J.P. “Kinetic Behavior of Enzymes in Artificial Membranes” Biochemistry, 13, 2995, (1974).CrossRefGoogle Scholar
  31. 31.
    Turing A.M. “The Chemical Basis of Morphogenesis” Phil. Trans. Roy. Soc, B237, 37–72, (1952).ADSGoogle Scholar
  32. 32.
    Zabusky N.J. and Hardin R.H. “Phase Transition, Stability, and Oscillations for an Autocatalytic, First Order Reaction in a Membrane” Phys. Rev. Letters 31, N° 13 (1973).Google Scholar
  33. 33.
    Joly G. “Analyse Mathématique de Structurations Spatio-temporelles dans des Systèmes à Enzymes Immobilisées” Thesis, to appear.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • J. P. Kernevez
    • 1
  • M. C. Duban
    • 1
  • C. Joly
    • 1
  • D. Thomas
    • 2
  1. 1.Université de Technologie de CompiègneCompiègne CedexFrance
  2. 2.Laboratoire De Technologie EnzymatiqueFrance

Personalised recommendations