Isotope Effects in Molecular Multiquantum Amplitudes

  • C. K. Rhodes
  • C. D. Cantrell
Part of the Studies in the Natural Sciences book series (SNS, volume 13)

Abstract

The full isotopic character of multiquantum amplitudes is discussed. Of particular importance are the roles of enhanced isotopic effects generally characteristic of molecular perturbed spectra and the complete utilization of all the available optical field variables. Examples involving NH3, CH3Br, and SF6 are examined.

Keywords

Formaldehyde Microwave Mercury Manifold Boron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    This expression “becomes F = 3M-5 for the special case of a linear molecule. See G. Herzberg, Molecular Spectra and Molecular Structure II, Infrared and Raman Spectra of Polyatomic Molecules (D. Van Nostrand Co., Inc., Princeton, N. J. 1945).Google Scholar
  2. 2.
    G. E. Zahr, R. K. Preston, and W. H. Miller, J. Chem. Phys. 62, 1127 (1975).ADSCrossRefGoogle Scholar
  3. 3.
    For the case M = 7, F = 15, a figure valid for CS symmetry, while an Oh, system has only 6 vibrational fundamentals on account of the degeneracy associated with that highly symmetric point group. These considerations will change quantitative comparisons, but not general scaling relationships.Google Scholar
  4. 4.
    C. H. Townes and A. L. Schawlow, Microwave Spectro-scopy (McGraw-Hill, New York, 1955);Google Scholar
  5. 4a.
    W. Gordy and R. L. Cook, Microwave Molecular Spectra (Wiley-Interscience, New York, 1970).Google Scholar
  6. 5.
    T. W. Meyer, J. F. Brilando, and C. K. Rhodes, Chem. Phys. Lett. 18, 382 (1973).ADSCrossRefGoogle Scholar
  7. 6.
    O. N. Kompanets, A. R. Kukudzhanov, V. S. Letokhov, V. G. Minogin, and E. L. Mikhailov, Zh. Eksp, Teor. Fiz. 69, 32 (1975);ADSGoogle Scholar
  8. 6a.
    O. N. Kompanets, A. R. Kukudzhanov, V. S. Letokhov, V. G. Minogin, and E. L. Mikhailov, Eng. Transl.: [Sov. Phys. — JETP 42, 15 (1976)].ADSGoogle Scholar
  9. 7.
    R. H. Garstang in Atomic and Molecular Processes, edited by D. R. Bates (Academic Press, New York, 1962) p. 1;Google Scholar
  10. 7a.
    C. B. Moore, Accts. Chem. Res. 6, 323 (1973).ADSCrossRefGoogle Scholar
  11. 8.
    Ya. B. Zel’dovich and I. I. Sobel’man, JETP Lett. 21, 168 (1975).ADSGoogle Scholar
  12. 9.
    K. R. Osborn, C. C. McDonald, and H. E. Gunning, J. Chem. Phys. 26, 125 (1957).ADSCrossRefGoogle Scholar
  13. 10.
    Y. Y. Kwan and E. A. Cohen, J. Mol. Spectrosc. 58, 54 (1975), (Coriolis vt and 2v 1n for C3v, e.g. NH3 v 4 = 1);ADSCrossRefGoogle Scholar
  14. 10a.
    G. Graner, J. Molec. Spectrosc. 51, 238 (1974), (2v 5 (A1) CH Br near 2860 cm-1, anharmonic/ Coriolis);ADSCrossRefGoogle Scholar
  15. 10b.
    C. Betrencourt-Stimemann, G. Graner, and G. Guelachvili, J. Molec. Spectrosc. 51, 2l6 (1974), (CH3Br, v 4 ~ 3100, v 3 + v 5 + v 6, “both 79Br and 81Br);Google Scholar
  16. 10c.
    J. L. Duncan, A. Allan, and D. C. McKean, Mol. Phys. 18, 289 (1970), (CH3Cl, CH3Br, CH I with 12C and 13C, anharmonic/centrifugal);ADSCrossRefGoogle Scholar
  17. 10d.
    D. C. McKean, Spectrochim. Acta 29A, 1559 (1973) (CH D spectra and Fermi resonance);MathSciNetADSGoogle Scholar
  18. 10e.
    N. Brosari-Zizi, C. Alamichel, et C. Amiot, Mol. Phys. 27, 1491 (1974), (CH Br v 4 + v 6, ~ 0.005 cm-1, Coriolis);ADSCrossRefGoogle Scholar
  19. 10f.
    D. R. Anderson and J. Overend, Spectroschim. Acta 27A, 2013 (l97l), (CH3Br v 3, 0.03 cm-1, rotational distortions);CrossRefGoogle Scholar
  20. 10g.
    P. K. I. Yin and K. N. Rao, J. Mol Spectrosc. 51, 199 (1974), (PH3, v 2 and v 4, Coriolis);ADSCrossRefGoogle Scholar
  21. 10h.
    A. G. Maki, J. Molec. Spectrosc. 57, 417 (1975), (O3, v 1 + v 3 ~ 2100 cm-1, Coriolis);ADSCrossRefGoogle Scholar
  22. 10i.
    M. S. Child and H. C. Longuet-Higgins, Proc. Roy. Soc. A254, 259 (1961), (Jahn-Teller);MathSciNetGoogle Scholar
  23. 10k.
    C. DiLauro and I. M. Mills, J. Mol. Spectrosc. 21, 386 (1966), (CH3F, v 2 - v 5 and v 3 - v 6; CD3Cl, v 2 - v 5; Coriolis 2nd order);ADSCrossRefGoogle Scholar
  24. 10l.
    R. S. McDowell, H. W. Galbraith, B. J. Krohn, C. D. Cantrell, and E. D. Hinkley, Optics Commun. 17, 178 (1976).ADSCrossRefGoogle Scholar
  25. 11.
    G. Graner, J. Mol. Spectrosc. 51, 238 (1974).ADSCrossRefGoogle Scholar
  26. 12.
    A. M. Bonch-Bruevich and V. A. Khodovoi, Usp. Fiz. Nauk 93, 71 (1976)Google Scholar
  27. 12a.
    A. M. Bonch-Bruevich and V. A. Khodovoi, [Sov. Phys.-Usp. 10, 637 (1968)];ADSCrossRefGoogle Scholar
  28. 12b.
    P. F. Liao and J. E. Bjorkholm, Phys. Rev. Lett. 34 1 (1975). This expression is accurate to ~ 1% for our discussion which follows: seeADSCrossRefGoogle Scholar
  29. 12c.
    P. F. Liao and J. E. Bjorkholm, Opt. Commun. l6, 392 (1976).ADSCrossRefGoogle Scholar
  30. 13.
    W. K. Bischel, P. J. Kelly, and C. K. Rhodes, Phys. Rev. A13, 1829 (1976).ADSGoogle Scholar
  31. 14.
    R. R. Jacobs, D. Prosnitz, W. K. Bischel, and C. K. Rhodes, Appl. Phys. Lett. 29, 710 (1976).ADSCrossRefGoogle Scholar
  32. 15.
    W. K. Bischel, P. J. Kelly, and C. K. Rhodes, Phys. Rev. A13, 1817 (1976).ADSGoogle Scholar
  33. 16.
    C. D. Cantrell and H. W. Galbraith, Optics Commun. 18, 513 (1976).ADSCrossRefGoogle Scholar
  34. 17.
    N. R. Isenor and M. C. Richardson, Appl. Phys. Lett. 18, 224 (1971):ADSCrossRefGoogle Scholar
  35. 17a.
    N. R. Isenor and M. C. Richardson, Optics Commun. 3, 360 (1971);ADSCrossRefGoogle Scholar
  36. 17b.
    N. R. Isenor and M. C. Richardson, Proc. Tenth Intern. Conf. on Ionization Phenomena in Gases (Oxford, Donald Parsons, 1971);Google Scholar
  37. 17c.
    N. R. Isenor, V. Merchant, R. S. Hallsworth, and M. C. Richardson, Can. J. Phys. 51, 1281 (1973);ADSCrossRefGoogle Scholar
  38. 17d.
    R. S. Hallsworth and N. R. Isenor, Chem. Phys. Lett. 22, 283 (1973).ADSCrossRefGoogle Scholar
  39. 18.
    R. V. Ambartzumian, V. S. Letokhov, E. A. Ryabov and N. V. Chekalin, ZhETF Pis. Red. 20, 597 (1974)ADSGoogle Scholar
  40. 18a.
    R. V. Ambartzumian, V. S. Letokhov, E. A. Ryabov and N. V. Chekalin, [JETP Lett. 20, 273 (1974)];ADSGoogle Scholar
  41. 18b.
    R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov and G. N. Makarov, ZhETF Pis. Red. 21, 375 (1975)ADSGoogle Scholar
  42. 18c.
    R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov and G. N. Makarov, [JETP Lett. 21, 171 (1975)].ADSGoogle Scholar
  43. 19.
    J. L. Lyman, R. J. Jensen, J. Rink, C. P. Robinson and S. D. Rockvood, Appl. Phys. Lett. 27, 87 (1975).ADSCrossRefGoogle Scholar
  44. 20.
    R. V. Ambartzumian, Yu. A. Gorokhov, V. S. Letokhov, G. N. Makarov, E. A. Ryabov and N. V. Chekalin, pp. 114–121 in Laser Spectroscopy, edited by J. C. Pebay-Peyroula, T. W. Hansch and S. E. Harris (Berlin, Springer-Verlag, 1975).Google Scholar
  45. 21.
    N. G. Basov, V. T. Galochkin, A. N. Oraevsky and N. F. Starodubtsev, ZhETF Pis. 23, 569 (1976)Google Scholar
  46. 21a.
    N. G. Basov, V. T. Galochkin, A. N. Oraevsky and N. F. Starodubtsev, [JETP Lett. 23, 521 (1976)].ADSGoogle Scholar
  47. 22.
    N. Bloembergen, C. D. Cantrell and D. M. Larsen, pp. 162–176 in Tunable Lasers and Applications, edited by A. Morradian, T. Jaeger and P. Stokseth (Berlin, Springer-Verlag, 1976).Google Scholar
  48. 23.
    J. P. Aldrige, J. H. Birely, C. D. Cantrell and D. C. Cartwright, pp. 57–14 in Laser Photochemistry, Tunable Lasers and Other Topics (Physics of Quantum Electronics, Vol. 4), edited by S. F. Jacobs, M. Sargent III, M. O. Scully and C. T. Walker (Reading, Mass., Addison-Wesley Publishing Co., 1976).Google Scholar
  49. 24.
    V. S. Letokhov and C. B. Moore, Kvant. Elekt. 3., 247 (1976)Google Scholar
  50. 24a.
    V. S. Letokhov and C. B. Moore, Kvant. Elekt. 3., 485 (1976)Google Scholar
  51. 24b.
    V. S. Letokhov and C. B. Moore, [Sov. J. Quant. Elect. 6, 129 (1976)].ADSCrossRefGoogle Scholar
  52. 24c.
    V. S. Letokhov and C. B. Moore, [Sov. J. Quant. Elect. 6, 259 (1976)].ADSCrossRefGoogle Scholar
  53. 25.
    S. Singer, J. J. Hayden and I. Liberman, private communication (1975).Google Scholar
  54. 26.
    T. P. Cotter, W. Fuss, K. L. Kompa and H. Stafast, Optics Commun. 18, 220 (1976).ADSCrossRefGoogle Scholar
  55. 27.
    R. L. Platzman, Radiation Research 17, 419 (1962).CrossRefGoogle Scholar
  56. 28.
    W. H. Shaffer, H. H. Nielsen and L. H. Thomas, Phys. Rev. 56, 895 (1939).ADSMATHCrossRefGoogle Scholar
  57. 28a.
    W. H. Shaffer, H. H. Nielsen and L. H. Thomas, Phys. Rev. 56, 1097 (1939).Google Scholar
  58. 29.
    K. Fox, J. Mol. Spectrosc. 9, 381 (1962).ADSCrossRefGoogle Scholar
  59. 30.
    C. D. Cantrell and H. W. Galbraith, Optics Communc. 18, 513 (1976).ADSCrossRefGoogle Scholar
  60. 31.
    H. W. Galbraith and C. D. Cantrell, J. Mol. Spectrosc. (to be published).Google Scholar
  61. 32.
    N. Bloembergen, Optics Communc. 15, 417 (1975).ADSGoogle Scholar
  62. 33.
    V. S. Letokhov and A. A. Markarov, Optics Commun. 17, 250 (1976);ADSCrossRefGoogle Scholar
  63. 33a.
    V. S. Letokhov and A. A. Markarov, Coherent Excitation of Multilevel Molecular Systems in Intense Quasi-Resonant Laser IR Field (Moscow, 1976).Google Scholar
  64. 34.
    K. T. Hecht, J. Mol. Spectrosc. 5, 355 (1960).ADSCrossRefGoogle Scholar
  65. 35.
    C. C. Jensen, W. B. Person, B. J. Krohn and J. Overend, Optics Commun. (in press)Google Scholar
  66. 36.
    H. W. Galbraith and C. D. Cantrell, This Volume.Google Scholar
  67. 37.
    R. S. McDowell, H. W. Galbraith, B. J. Krohn, C. D. Cantrell and E. D. Hinkley, Optics Commun. 17, 178 (1976).ADSCrossRefGoogle Scholar
  68. 38.
    D. M. Larsen and N. Bloembergen, Optics Commun. 17, 254 (1976).ADSCrossRefGoogle Scholar
  69. 39.
    V. S. Letokhov and R. V. Ambartzumian, private communication (1976).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • C. K. Rhodes
    • 1
  • C. D. Cantrell
    • 2
  1. 1.Stanford Research InstituteMenlo ParkUSA
  2. 2.University of CaliforniaLos AlamosUSA

Personalised recommendations