Some Recent Developments on Solitons in Two-Dimensional Field Theories

  • Andre Neveu
Part of the Studies in the Natural Sciences book series (SNS, volume 13)


This review is written for both mathematical physicists and applied mathematicians. It discusses some recent results, conjectures, and open problems of classical and semi classical mechanics of field theories in one space and one time dimension. We concentrate on theories with either Lorentz or Galilean invariance, dividing the review into three parts: One on exactly soluble models, one on a model which we conjecture is exactly soluble, and one on approximate methods in non-exactly soluble models.


Rest Frame Field Configuration Inverse Scattering Method Soluble Model Galilean Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of exactly soluble two-dimensional classical field theories, see: A.C. Scott, F.Y.F. Chu and D.W. McLaughlin, Proc. IEEE 61, 1443 (1973).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    M. Ablowitz, D. Kaup, A. Nevell and H. Segur, Phys. Rev. Lett. 30, 1262 (1973).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    L. Takhtadzhyan and L.D. Faddeev, Theor. Math. Phys. 21, 160 (1974).CrossRefGoogle Scholar
  4. 4.
    R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D11, 3424 (1975).MathSciNetADSGoogle Scholar
  5. 5.
    See A. Jevicki’s report at this conference and references therein.Google Scholar
  6. 6.
    S. Coleman, Phys. Rev. D11, 2088 (1975).ADSGoogle Scholar
  7. 7.
    R.J. Baxter, Phys. Rev. Lett. 26, 834 (1971),ADSCrossRefGoogle Scholar
  8. 7a.
    R.J. Baxter, Ann. Phys. 70, 323 (1972),MathSciNetADSCrossRefGoogle Scholar
  9. 7b.
    J.D. Johnson, S. Krinsky and B.M. McCoy, Phys. Rev. A8, 2525 (1973).ADSGoogle Scholar
  10. 8.
    A. Luther, Phys. Rev. B14, 2153 (1976).ADSGoogle Scholar
  11. 9.
    V.E. Korepin, P.P. Kulish and L.D. Faddeev, JETP Lett. 21, 138 (1975).ADSGoogle Scholar
  12. 10.
    V.E. Korepin, JETP Lett. 23, 201 (1976).ADSGoogle Scholar
  13. 11.
    A.B. Zamolodchikov, ITEP preprint, Moscow (1976).Google Scholar
  14. 12.
    J.L. Gervais and A. Jevicki, Nucl. Phys. B110, 113 (1976).MathSciNetADSCrossRefGoogle Scholar
  15. 13.
    A. Klein and F. Krejs, Phys. Rev. D13, 3282 (1976).ADSGoogle Scholar
  16. 14.
    C. Nohl, Ph.D. Thesis, Princeton University 1976.Google Scholar
  17. 15.
    C.N. Yang, Phys. Rev. 168, 1920 (1968).ADSCrossRefGoogle Scholar
  18. 15a.
    Yu. C. Tyupkin, V.A. Fateev and A.S. Schwartz, Sov. J. Nucl. Phys. 22, 321 (1975).Google Scholar
  19. 16.
    D.J. Gross and A. Neveu, Phys. Rev. D10, 3235 (1974).ADSGoogle Scholar
  20. 17.
    R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. D12, 2443 (1975).MathSciNetADSGoogle Scholar
  21. 18.
    A. Luther, private communication.Google Scholar
  22. 19.
    This was noticed by A. Klein, whom the author thanks for a most interesting conversation on this subject at the 1976 Orbis Scientiae Conference.Google Scholar
  23. 20.
    D.K. Campbell and Y.T. Liao, Phys. Rev. D14, 2431 (1976).ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Andre Neveu
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations