Advertisement

Abstract

Aluminum oxide is one of the most important materials of high-temperature technology. Its behavior at high temperatures must be well known, and this explains the great interest in elucidating the state of aluminum oxide in vapors. However, despite the series of studies of the composition of the vapor over aluminum oxide and the determination of the thermodynamic characteristics of gaseous compounds of aluminum with oxygen, much remains unclear.

Keywords

Rare Earth Vapor Pressure Dissociation Energy Rare Earth Oxide Yttrium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ackermann, R. J., and R. J. Thorn. J. Am. Chem. Soc. 78:4169 (1956).CrossRefGoogle Scholar
  2. Ackermann, R. J., and R. J. Thorn, XVI Congrès Internat. de Chim. Pure et Appl., 1957, Mémoires presentés à la Sectionde Chimie Minèrale, Paris (1958), p. 675.Google Scholar
  3. Ackermann, R. J., and R. J. Thorn. “Vaporization of oxides,” Progr.Ceram. Sci., Vol. 1 (1961).Google Scholar
  4. Akishin, P. A., L. N. Gorokhov, and Yu. S. Khodeev. Zh. Strukt. Khim. 2: 209 (1961).Google Scholar
  5. Baer, P. G., R. Geene, H. Smith, and J. Wortman. In: Kinetics, Equilibria and Performance of High Temperature Systems, G. S. Bahn and E. E. Zukoski (eds.) (1960), p. 90.Google Scholar
  6. Baur, E., and R. Brunner. Z. Elektrochem. 40:155 (1934).Google Scholar
  7. Baur, E., and R. Brunner. Helv. Chem. Acta 17: 958 (1934).CrossRefGoogle Scholar
  8. Beletskii, M. C., and M. B. Rapoport. Dokl. Akad. Nauk SSSR 80:751 (1951).Google Scholar
  9. Berl, W. G., and W. Renish. In: Thermodynamic and Transport Properties of Gases, Liquids, and Solids, U. S. Touloukian (ed.), McGraw-Hill Book Co., Inc., New York (1959), p. 247.Google Scholar
  10. Brewer, L. Chem. Rev. 52:1 (1953).CrossRefGoogle Scholar
  11. Brewer, L., and A. W. Searcy. J. Am. Chem. Soc. 73: 5309–5314 (1951).Google Scholar
  12. Brukl, A., and Y. Ortner. Z. Anorg. Chem. 203: 23 (1932).Google Scholar
  13. Chupka, W. A., M. G. Inghram, and R. F. Porter. J. Chem. Phys. 24: 792 (1956).CrossRefGoogle Scholar
  14. Cochran, C. N. J. Am. Chem. Soc. 77: 2190 (1955).CrossRefGoogle Scholar
  15. Coughlin, J. P. U. S. Bureau of Mines, Bulletin No. 542 (1954).Google Scholar
  16. De Maria, G., J. Drowart, and M. Inghram. J. Chem. Phys. 30: 318 (1959).CrossRefGoogle Scholar
  17. Drowart, J., G. De Maria, R. Burns, and M. Inghram. J. Chem. Phys. 32(5): 1366–1372 (1960).CrossRefGoogle Scholar
  18. Evans, W. H., E. J. Prosen, and D. D. Wagman. In: Thermodynamic and Transport Properties of Gases, Liquids, and Solids, U. S. Touloukian (ed.), McGraw-Hill Book Co., Inc., New York (1959), pp. 226–235.Google Scholar
  19. Gaydon, A. G. Dissociation Energies and Spectra of Diatomic Molecules [Russian translation], IL, Moscow (1949).Google Scholar
  20. Ginnings, D. C., and G. T. Furukawa. J. Am. Chem. Soc. 75:522 (1953).CrossRefGoogle Scholar
  21. Goldstein, H. W., P. N. Walsh, and D. White. J. Phys. Chem. 64:1087 (1960).CrossRefGoogle Scholar
  22. Grube, G., A. Schneider, U. Esch, and M. Flad. Z. Anorg. Chem. 260:120–126 (1949).CrossRefGoogle Scholar
  23. Gurvich, L. V., and I. V. Veits. Izv. Akad. Nauk SSSR, Ser. Fiz. 22(6): 673–676 (1958).Google Scholar
  24. Hafner, H. C., N. J. Kreidl, and R. A. Weidel. J. Am. Ceram. Soc. 41(8): 315–323 (1958).CrossRefGoogle Scholar
  25. Herzberg, G. Spectra and Structure of Diatomic Molecules [Russian translation], IL, Moscow (1949).Google Scholar
  26. Herzberg, G. Vibration and Rotation Spectra of Polyatomic Molecules [Russian translation], IL, Moscow (1949).Google Scholar
  27. Hoch, M., and H. L. Johnston. J. Am. Chem. Soc. 76: 2560–2561 (1954).CrossRefGoogle Scholar
  28. Howell, H. C. Proc. Phys. Soc. 57: 32 (1945).CrossRefGoogle Scholar
  29. Huber, E. J., E. L. Head, and C. E. Holley. J. Phys. Chem. 64:1768 (1960).CrossRefGoogle Scholar
  30. Huber, E. J., C. E. Holley, and E. L. Head. J. Phys. Chem. 61: 497 (1957).CrossRefGoogle Scholar
  31. Huff, V. N., S. Gordon, and V. E. Morrell. General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions (1950).Google Scholar
  32. Inghram, M., R. F. Porter, and W. A. Chupka. J. Chem. Phys. 25: 498 (1956).CrossRefGoogle Scholar
  33. Inghram, M., and J. Drowart. In: Investigations at High Temperatures [Russian translation], IL, Moscow (1962). pp. 274–306.Google Scholar
  34. Kelley, K. K. Bull. Am. Mines (1949), p. 476.Google Scholar
  35. Lagerqvist, A. Mém. Soc. Sci. Liège 18: 550 (1957).Google Scholar
  36. Lagerqvist, A., N. E. Nillson, and R. F. Barrow. Proc. Phys. Soc. A69: 356 (1956).Google Scholar
  37. Mal’tsev, A. A., V. K. Matveev, and V. M. Tatevskii. Dokl. Akad. Nauk SSSR 137(1) (1961).Google Scholar
  38. Mal’tsev, A. A., V. K. Matveev, and V. M. Tatevskii. Vestn. Mosk. Univ., No. 1 (1961).Google Scholar
  39. Mal’tsev, A. A., and V. M. Tatevskii. Otchet Khim. Fak. Mosk. Univ., No. 210 (1958).Google Scholar
  40. Margrave, J. L., J. R. Soulen, G. E. Leroi, F. T. Greene, and S. P. Randell. XVI Congrès Internat. de Chim. Pure et Appl., 1957, Mémoirs presentés à la Section de Chimie Minérale, Paris (1958).Google Scholar
  41. Medvedev, V. A. Zh. Fiz. Khim. 32:1690 (1958).Google Scholar
  42. Moore, C. E. Atomic Energy Levels, Natl. Bur. Std. (U.S.), Circ. 467 (1958).Google Scholar
  43. Mott, W. R. Trans. Am. Electrochem. Soc. 34: 255 (1918).Google Scholar
  44. Nesmeyanov, A. N., and L. P. Firsova. Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Met. i Toplivo 3:150–151 (1959).Google Scholar
  45. Panish, M. B. J. Chem. Phys. 34(3): 1079–1080 (1961);Google Scholar
  46. Panish, M. B. J. Chem. Phys. 34(6): 2197–2198 (1961).Google Scholar
  47. Porter, R. F., P. Schissel, and M. G. Inghram. J. Chem. Phys. 23(2): 339–343 (1955).CrossRefGoogle Scholar
  48. Rhodes, W. H. J. Am. Ceram. Soc. 44(6): 300 (1961).CrossRefGoogle Scholar
  49. Rosen, B. Physica 12:184 (1946).CrossRefGoogle Scholar
  50. Rosen, B. Données Spectroscopiques Concernant les Molecules Diatomiques (1951).Google Scholar
  51. Ruff, O., and M. Konschak. Z. Elektrochem. 32:515 (1926).Google Scholar
  52. Rusin, A. D., and V. M. Tatevskii. Dokl. Akad. Nauk SSSR 139(3): 630–633 (1961).Google Scholar
  53. Scheer, M. D. J. Phys. Chem. 61:1184 (1957).CrossRefGoogle Scholar
  54. Searcy, A. W., and C. E. Meyers. J. Phys. Chem. 61:957 (1957).CrossRefGoogle Scholar
  55. Sears, G. W., and L. Navias. J. Chem. Phys. 30(4): 1111–1112 (1959).CrossRefGoogle Scholar
  56. Shchukarev, S. A., and G. A. Semenov. Dokl. Akad. Nauk SSSR 141: 652 (1961).Google Scholar
  57. Shchukarev, S. A., G. A. Semenov, and I. A. Rafkovskii. Zh. Neorgan. Khim. 6(8): 1973 (1961).Google Scholar
  58. Shchukarev, S. A., G. A. Semenov, I. A. Rat’kovskii, and V. A. Perevozchikov. Zh. Obshch. Khim. 31: 2090–2092 (1961).Google Scholar
  59. Shchukarev, S. A., G. A. Semenov, and I. A. Rafkovskii. Zh. Prikl. Khim. 35(7): 1454 (1962).Google Scholar
  60. Soulen, J. R., and J. L. Margrave. J. Am. Chem. Soc. 78: 2911 (1956).CrossRefGoogle Scholar
  61. Soulen, J. R., P. Sthapitanonda, and J. L. Margrave. J. Phys. Chem. 59:132 (1955).CrossRefGoogle Scholar
  62. Speiser, R., S. Naiditch, and H. L. Johnston. J. Am. Chem. Soc. 72: 2578 (1950).CrossRefGoogle Scholar
  63. Veits, I. V., and L. V. Gurvich. Dokl. Akad. Nauk SSSR 108(4): 659–661 (1956).Google Scholar
  64. Walker, R. F., J. Efimenko, and N. L. Lofgren. Planetary Space Sci. 3: 24–30 (February 1961).CrossRefGoogle Scholar
  65. Walsh, P. N., D. T. Dever, H. W. Goldstein, and D. White. J. Phys. Chem. 65(8): 1400–1413 (1961).CrossRefGoogle Scholar
  66. Walsh, P. N., H. W. Goldstein, and D. White. Air Force Office of Sci. Res. Rept. (1958), pp. 58–382.Google Scholar
  67. Walsh, P. N., H. W. Goldstein, and D. White. J. Am. Ceram. Soc. 43(5): 229–233 (1960).CrossRefGoogle Scholar
  68. Wartenberg, H, and W. Gurr. Z. Anorg. Allgem. Chem. 196: 381 (1930).Google Scholar
  69. White, W. S. Astrophys. J. 121: 271 (1955).CrossRefGoogle Scholar
  70. Wiley, W. C. Science 124: 217 (1956).CrossRefGoogle Scholar
  71. Wiley, W. C., and J. H. McLaren. Rev. Sci. Instr. 26:1150 (1955).CrossRefGoogle Scholar
  72. Zintl, E., W. Krings, and W. Branning. German Patent, 742,330, October 14, 1943.Google Scholar
  73. Zintl, E., W. Morawietz, and E. Gastinger. Z. Anorg. Chem. 245: 8 (1940).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • Nikita Aleksandrovich Toropov
    • 1
  • Valentin Pavlovich Barzakovskii
    • 1
  1. 1.Leningrad Institute of Silicate ChemistryAcademy of Sciences of the USSRRussia

Personalised recommendations