At the present time it is assumed that the following oxides of silicon exist: SiO2, SiO, and Si2O3. The last two compounds are stable only at high temperatures. It is usually assumed that the composition of silica corresponds exactly to the formula SiO2. However, in view of the fact that silicon monoxide is readily formed at high temperatures, there is the possibility that silica and silicon monoxide will give a compound of variable composition SiO2-x, where x is probably a low value.


Free Energy Vapor Pressure Call Mole Vitreous Silica Silicon Monoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrow, R. F. Proc. Roy. Soc. (London), Ser. A 224: 374 (1954).CrossRefGoogle Scholar
  2. Barrow, R. F. Trans. Faraday Soc. 51:1480 (1955).CrossRefGoogle Scholar
  3. Bergman, G. A., and V. A. Medvedev. Trans. State Inst. Appl. Chem. 42:158–172 (1959), Goskhimizdat, Leningrad.Google Scholar
  4. Bonhoeffer, K. F. Z. Phys. Chem. 131: 369 (1928).Google Scholar
  5. Brady, G. W. J. Phys. Chem. 63(7): 1119–1120 (1959).CrossRefGoogle Scholar
  6. Brewer, L. Chem. Rev. 52:1 (1953).CrossRefGoogle Scholar
  7. Brewer, L., and R. K. Edwards. J. Phys. Chem. 58(4): 351–358 (1954).CrossRefGoogle Scholar
  8. Brewer, L., and F. T. Greene. Phys. Chem. Solids 2: 286–288 (1957).CrossRefGoogle Scholar
  9. Brewer, L., and D. F. Mastick. J. Chem. Phys. 19: 834 (1951).CrossRefGoogle Scholar
  10. Brewer, L., and G. M. Rosenblatt. Chem. Rev. 61(3): 257–263 (1961).CrossRefGoogle Scholar
  11. Brewer, L., and P. Zavitsanos. Phys. Chem. Solids (1957), pp. 2284–2285.Google Scholar
  12. Cremer, E., A. Faessler, and H. Krämer. Naturwissensch. 46: 377 (1959).CrossRefGoogle Scholar
  13. Dadape, V. V., and J. L. Margrave. Abstracts of Scientific Papers Presented at the Eighteenth Internat. Congress of Pure and Appl. Chem. (1961), pp. 103–104.Google Scholar
  14. Dashevskii, Ya. V., and S. I. Khitrik. Stal’, No. 10:892 (1948).Google Scholar
  15. Eastman, E. D., L. Brewer, L. A. Bromley, P. W. Gilles, and N. L. Lofgren. J. Am. Chem. Soc. 72: 2248 (1950).CrossRefGoogle Scholar
  16. Ewles, J., and R. F. Youell. Trans. Faraday Soc. 47(10): 1060–1064 (1951).CrossRefGoogle Scholar
  17. Fuller, C. S. Seventeenth Internat. Kongress Reine Angewandte Chemie, Plenarvorträge, Vol. I, Anorganische Chemie (1960), pp. 271–299.Google Scholar
  18. Gel’d, P. V. High-Temperature Reduction Processes (1951), pp. 10–55.Google Scholar
  19. Gel’d, P. V., and O. A. Esin. High-Temperature Reduction Processes (1957), Metallurgizdat, Moscow.Google Scholar
  20. Gel’d, P. V., and M. K. Kochnev. Zh. Prikl. Khim. 21:1249 (1948).Google Scholar
  21. Geller, S., and C. D. Thurmond. J. Am. Chem. Soc. 77: 5285 (1955).CrossRefGoogle Scholar
  22. Grube, G., and H. Speidel. Z. Elektrochem. 53: 339 (1949).Google Scholar
  23. Günther, K. G. Glastech. Ber. 31(1): 15 (1958).Google Scholar
  24. Gurvich, A. M., and Yu. Kh. Shailov. Thermodynamic Investigations by the Explosion Method and Calculations of Combustion Processes, Izd. MGU (1955).Google Scholar
  25. Hass, G. J. Am. Ceram. Soc. 33: 353 (1950).CrossRefGoogle Scholar
  26. Hass, G., and C. D. Salzberg. J. Opt. Soc. Am. 44(3): 181–187 (1954).CrossRefGoogle Scholar
  27. Herlet, A., and G. Reich. Z. Angew. Phys. 9(1): 14, 23 (1957).Google Scholar
  28. Herzberg, G. Vibration and Rotation Spectra of Polyatomic Molecules [Russian translation], IL, Leningrad (1949).Google Scholar
  29. Hoch, M., and H. L. Johnston. J. Am. Chem. Soc. 75(21): 5224–5225 (1953).CrossRefGoogle Scholar
  30. Honig, R. E. RCA Rev. 18: 2 (1957).Google Scholar
  31. Howarth, L. E., and W. G. Spitzer. J. Am. Ceram. Soc. 44(1): 26–28 (1961).CrossRefGoogle Scholar
  32. Humphrey, G. L., S. S. Todd, J. P. Coughlin, and E. G. King. U. S. Bureau of Mines, Bulletin No. 4888 (1952).Google Scholar
  33. Inuzuka, H., and M. Ageha. J. Japan Ceram. Assoc. 50:105 (1942)[see: Chem. Abstr. 44: 8080d (1950)].CrossRefGoogle Scholar
  34. Jacobs, G. Comptes Rend. 236:1369–1371 (1953).Google Scholar
  35. Kaiser, W., H. L. Frisch, and H. Reiss. Phys. Rev. 112:1546 (1958).CrossRefGoogle Scholar
  36. Kelley, K. K. U. S. Bureau of Mines, Bulletin No. 477, (1950), p. 113.Google Scholar
  37. Kubaschewski, O., and E. L. Evans (eds.). Metallurgical Thermochemistry, 3rd ed., Pergamon Press, Inc., New York (1958), p. 195.Google Scholar
  38. Kubaschewski, O., and E. L. Evans (eds.). Metallurgical Thermochemistry, Assessment of Standard Values Silicon Monoxide, Pergamon Press, Inc., New York (1958), pp. 390–396.Google Scholar
  39. Latimer, W. M. J. Am. Chem. Soc. 73:1480 (1951).CrossRefGoogle Scholar
  40. Medvedev, V. A. Zh. Fiz. Khim. 32(8): 1851–1858 (1958).Google Scholar
  41. Medvedev, V. A., V. V. Korobov, and V. F. Baibuz. Zh. Fiz. Khim. 32(12) (1958).Google Scholar
  42. Nesmeyanov, A. N., and L. P. Belykh. Zh. Fiz. Khim. 34: 841 (1960).Google Scholar
  43. Nesmeyanov, A. N., and L. P. Belykh. Zh. Fiz. Khim. 34:1032 (1960).Google Scholar
  44. Nesmeyanov, A. N., and L. P. Firsova. Zh. Fiz. Khim. 34(9): 1907–1910 (1960),Google Scholar
  45. Olett in: J. Elliott (ed.). Phys. Chem. Steelmaking, Proc. Dedham, Mass. (1956), Technology Press, M.I.T., Cambridge, Mass. (1958), pp. 18–26.Google Scholar
  46. Platteeuw, J. C., and G. Meyer. Trans. Faraday Soc. 52:1066 (1956).CrossRefGoogle Scholar
  47. Porter, R. F., W. A. Chupka, and M. G. Inghram. J. Chem. Phys. 23(1): 216–217 (1955).CrossRefGoogle Scholar
  48. Potter, H. N. Trans. Am. Electrochem. Soc. 12:191, 215, 223 (1907).Google Scholar
  49. Primak, W., L. H. Fuchs, and P. Day. J. Am. Ceram. Soc. 38:135 (1955).CrossRefGoogle Scholar
  50. Ramstad, H. F., and F. D. Richardson (with an appendix by P.J. Bowles). Trans. Metallurg. Soc. of AIME 221(5): 1021–1028 (1961).Google Scholar
  51. Ruff, O. Trans. Am. Electrochem. Soc. 68: 87 (1935).CrossRefGoogle Scholar
  52. Ruff, O., and M. Konschak. Z. Elektrochem. 32: 515 (1926).Google Scholar
  53. Ruff, O., and P. Schmidt. Z. Anorg. Chem. 117:172 (1921).CrossRefGoogle Scholar
  54. Schäfer, H., and R. Hörnle. Z. Anorg. Allgem. Chem. 263:261 (1950).CrossRefGoogle Scholar
  55. Schick, H. L. Chem. Rev. 60(4): 331–362 (1960).CrossRefGoogle Scholar
  56. Sosman, R. B. Trans. Brit. Ceram. Soc. 54:655 (1955).Google Scholar
  57. Stull, D. R., and G. C. Sinke. Thermodynamic Properties of the Elements (1956).Google Scholar
  58. Tombs, N. C., and A. J. Welch. J. Iron Steel Inst. 172: 69 (1952).Google Scholar
  59. Warren, B. E., H. Krutter, and O. Morningstar. J. Am. Chem. Soc. 19: 202 (1936).Google Scholar
  60. Wartenberg, H. Z. Elektrochem. 53: 343 (1949).Google Scholar
  61. Wartenberg, H. Z. Anorg. Allgem. Chem. 265:186 (1951).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • Nikita Aleksandrovich Toropov
    • 1
  • Valentin Pavlovich Barzakovskii
    • 1
  1. 1.Leningrad Institute of Silicate ChemistryAcademy of Sciences of the USSRRussia

Personalised recommendations