The free energy of formation of silicates from oxides, i.e., of the process oxide + silica = silicate, is known for a limited number of these reactions. Equally few data are available for the free energies of formation of ferrites, aluminates, chromites, etc.


Free Energy Solid Solution Galvanic Cell Solid Electrolyte Cerium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, Edgington, Roberts, and Wait. J. Chem. Soc. (1954), p. 3324.Google Scholar
  2. Aramaki, S., and R. Roy. J. Am. Ceram. Soc. 45: 5 (1962).CrossRefGoogle Scholar
  3. Aronson, S., and J. Belle. J. Chem. Phys. 29(1): 151–158 (1958).CrossRefGoogle Scholar
  4. Aronson, S., and J. C. Clayton. J. Chem. Phys. 32(3): 749–754 (1960).CrossRefGoogle Scholar
  5. Baird, J. D., and J. Taylor. Trans. Faraday Soc. 54: 526 (1958).CrossRefGoogle Scholar
  6. Benz, R., and H. Schmalzried. Z. Phys. Chem., Neue Folge 29(1–2): 77–82 (1961).CrossRefGoogle Scholar
  7. Benz, R., and C. Wagner. J. Phys. Chem. 65:1308 (1961).CrossRefGoogle Scholar
  8. Biltz, W., and H. Müller. Z. Anorg. Allgem. Chem. 163: 257 (1927).CrossRefGoogle Scholar
  9. Blumenthal, R. N., and D. H. Whitmore. J. Am. Ceram. Soc. 44(10): 508 (1961).CrossRefGoogle Scholar
  10. Boricke, F., and W. M. Bangert. Bureau of Mines Report of Investigation, 3813 (1945).Google Scholar
  11. Brauer, G., K. A. Gingirich, and U. Holtschmidt. J. Inorg. Nucl. Chem. 16:77 (1960).CrossRefGoogle Scholar
  12. Busby, T. S. Trans. Brit. Ceram. Soc. 60(2): 134 (1961).Google Scholar
  13. Chen, H. M., and J. Chipman. Trans. Am. Soc. Metals 38: 70 (1947).Google Scholar
  14. Circular of the National Bureau of Standards, U. S. Printing Office, Washington, D. C., No. 500 (1952), p. 629.Google Scholar
  15. Clark, S. P., E. C. Robertson, and F. Birch. Am. J. Sci. 255: 628 (1957).CrossRefGoogle Scholar
  16. Cooper, A. C., D. A. R. Kay, and J. Taylor. Trans. Brit. Ceram. Soc. 60(2): 124–134 (1961).Google Scholar
  17. Coughlin, J. P. U. S. Bureau of Mines, Bulletin No. 542 (1954).Google Scholar
  18. Croatto, U., and C. Bruno. Ric. Sci. 17:1998 (1947).Google Scholar
  19. Darken, L. S., and R. W. Gurry. J. Am. Chem. Soc. 67:1398 (1945).CrossRefGoogle Scholar
  20. Eberius, E. Dissertation, Leipzig (1931).Google Scholar
  21. Emmett, P. H., and J. F. Schultz. J. Am. Chem. Soc. 52:1782 (1930).CrossRefGoogle Scholar
  22. Fischer, W. A. In: Physical Chemistry of Steelmaking, J. Elliott (ed.), (1958), p. 79.Google Scholar
  23. Fischer, W. A., and A. Hoffmann. Naturwissenschaften 41:162 (1954).CrossRefGoogle Scholar
  24. Fischer, W. A., and A. Hoffmann. Arch. Eisenhüttenw. 26:43 (1955).Google Scholar
  25. Fischer, W. A., and A. Hoffmann. Arch. Eisenhüttenw. 26:63 (1955).Google Scholar
  26. Fischer, W. A., and G. Lorenz. Arch. Eisenhüttenw. 28:497 (1957).Google Scholar
  27. Flood, H., and W. J. Knapp. J. Am. Ceram. Soc. 40: 206 (1957).CrossRefGoogle Scholar
  28. Fricke, R., and G. Weitbrecht. Z. Elektrochem. 48: 87 (1942).Google Scholar
  29. Gerasimov, Ya. I., and I. A. Vasil’eva. J. Chim. Phys. 56: 639 (1959).Google Scholar
  30. Gerasimov, Ya. I., I. A. Vasil’eva, T. P. Chusova, V. A. Geiderikh, and M. A. Timofeeva. Dokl. Akad. Nauk SSSR 134:1350–1352 (1960).Google Scholar
  31. Glushkova, V. B. Zh. Neorgan. Khim. 2: 2438 (1957).Google Scholar
  32. Glushkova, V. B., and É. K. Keler. Zh. Neorgan. Khim. 1:2283 (1956).Google Scholar
  33. Grjotheim, K., O. Herstad, and J.M. Toguri. Can. J. Chem. 39(11): 2290 (1961).CrossRefGoogle Scholar
  34. Hahn, W. C., and A. Muan. J. Phys. Chem. Solids 19(3–4): 338 (1961).CrossRefGoogle Scholar
  35. Hund, F. Z. Phys. Chem. 199:142 (1952).Google Scholar
  36. Karpachev, S. V., and S. F. Pal’guev. Trans. Inst. Electrochem. 1 (1960) (English Transi.).Google Scholar
  37. Kelley, K. K. Contributions to the Data on Theoretical Metallurgy XIII, U. S. Bureau of Mines, Bulletin No. 584 (1959).Google Scholar
  38. King, E. J. Am. Chem. Soc. 79: 5437 (1957).CrossRefGoogle Scholar
  39. Kiukkola, K. Acta Chem. Scand. 16(2): 326 (1962).Google Scholar
  40. Kiukkola, K., and C. Wagner. J. Electrochem. Soc. 104(6): 379–387 (1957).CrossRefGoogle Scholar
  41. Kubaschewski, O., and E. Evans. Thermochemistry in Metallurgy [Russian translation], IL, Moscow (1954).Google Scholar
  42. Kusenko, F. G., and P. V. Gel’d. Izv. Sibirsk. Otd. Akad. Nauk SSSR, No. 2 (1960).Google Scholar
  43. Kuznetsov, F. A. Thermodynamic Investigation of Cerium Oxides, Author’s abstract of dissertation, Moscow (1961).Google Scholar
  44. Lavrent’ev, V. I. Thermodynamic Investigation of Niobium Oxides, Author’s abstract of dissertation, IONKh Akad. Nauk SSSR, Moscow (1961).Google Scholar
  45. Lebedev, B. G., and V. A. Levitskii. Zh. Fiz. Khim. 35(12): 2788 (1961).Google Scholar
  46. Lindner, R., and A. Åkerström. Z. Phys. Chem., Neue Folge 6:162 (1956).CrossRefGoogle Scholar
  47. Mchedlov-Petrosyan, O. P. Zh. Fiz. Khim. 24(11): 1299 (1950).Google Scholar
  48. Mchedlov-Petrosyan, O. P. Zh. Fiz. Khim. 26(12): 1785 (1952).Google Scholar
  49. Mchedlov-Petrosyan, O. P. In collection: Physicochemical Bases of Ceramics, Promstroiizdat, Moscow (1956), pp. 499–503.Google Scholar
  50. Mchedlov-Petrosyan, O. P., and W. I. Babuschkin. Silikat. Tech. 9(5): 209 (1958).Google Scholar
  51. Morozova, M. P., and L. L. Getskina. Zh. Otd. Khim. 29:1049 (1959).Google Scholar
  52. Morozova, M. P., and T. A. Stolyarova. Zh. Obshch. Khim. 30: 3848 (1960).Google Scholar
  53. Muan, A. Trans. AIME 204: 965–976 (1955).Google Scholar
  54. Ol’shanskii, Ya. I. In Collection: Experimental Techniques and Investigation Methods at High Temperatures, Izd. Akad. Nauk SSSR (1959), pp. 402–410.Google Scholar
  55. Pal’guev, S. F., S. V. Karpachev, A. D. Neuimin, and Z. S. Volchenkova. Dokl. Akad. Nauk SSSR 134:1138–1141 (1960).Google Scholar
  56. Passerini, L. Gazz. Chim. Ital. 59:144 (1929).Google Scholar
  57. Peters, H., and H. H. Mobius. Z. Phys. Chem. 209: 298 (1958).Google Scholar
  58. Popov, G. P., and G. I. Chufarov. Dokl. Akad. Nauk SSSR 141: 877–879 (1961).Google Scholar
  59. Popov, M. M., G. L. Gal’chenko, and M. D. Senin. Zh. Neorgan. Khim. 3:1734 (1958).Google Scholar
  60. Reinhold, H. Z. Anorg. Allgem. Chem. 171:181 (1928).CrossRefGoogle Scholar
  61. Reinhold, H. Z. Elektrochem. 40:361 (1934).Google Scholar
  62. Rezukhina, T. N. Zh. Neorgan. Khim. 5:1016–1021 (1960).Google Scholar
  63. Rezukhina, T. N., Ya. I. Gerasimov, and Yu. P. Simanov. Vestn. Mosk. Univ., No. 6:103 (1949).Google Scholar
  64. Rezukhina, T. N., V. I. Lavrent’ev, V. A. Levitskii, and F. A. Kuznetsov. Zh. Fiz. Khim. 35(6): 1367–1369 (1961).Google Scholar
  65. Rezukhina, T. N., V. A. Levitskii, and N. M. Kazimirova. Zh. Fiz. Khim. 35(11): 2639–2642 (1961).Google Scholar
  66. Richardson, H. M. Trans. Brit. Ceram. Soc. 60(2): 133 (1961).Google Scholar
  67. Richardson, F. D., and J. H. E. Jeffes. J. Iron Steel Inst. (London) 160(3): 261 (1948).Google Scholar
  68. Richardson, F. D., and L. E. Webb. Trans. Inst. Mining Met. 64: 529 (1955).Google Scholar
  69. Rose, B. A., G. J. Davis, and H. J. T. Ellingham. Discussions Faraday Soc. 4:154 (1948).CrossRefGoogle Scholar
  70. Roth, W. A., and F. Wienert. Arch. Eisenhüttenw. 7: 455 (1934).Google Scholar
  71. Sator, A. Comptes Rend. 234: 2283 (1952).Google Scholar
  72. Schenck, R., and H. Wesselkock. Z. Anorg. Allgem. Chem. 184: 39 (1929).CrossRefGoogle Scholar
  73. Schmahl, G. N. Z. Elektrochem. 47: 826 (1941).Google Scholar
  74. Schmalzried, H. Z. Phys. Chem., Neue Folge 25(3–4): 178–192 (1961).Google Scholar
  75. Taits, A. Yu. Tsvetn. Metal. 30:56 (1957).Google Scholar
  76. Taylor, J. Trans. Brit. Ceram. Soc. 60(2): 133 (1961).Google Scholar
  77. Torgeson, D. B., and T. G. Sahama. J. Am. Chem. Soc. 70: 2156 (1948).CrossRefGoogle Scholar
  78. Toropov, N. A., and F. Ya. Galakhov. Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 1: 8–11 (1958).Google Scholar
  79. Treadwell, W. D., H. Amman, and T. Zürrer. Helv. Chim. Acta 19:1255 (1936).CrossRefGoogle Scholar
  80. Trzebiatowski, W., and P. W. Selwood. J. Am. Chem. Soc. 72: 4504 (1950).CrossRefGoogle Scholar
  81. Tubandt, C. Handbuch der Experimentalphysik, Vol. 12 (1932).Google Scholar
  82. Tubandt, C., S. Eggert, and Schibbe, Z. Anorg. Chem. 117:1 (1921).CrossRefGoogle Scholar
  83. Ure, R. W. J. Phys. Chem. 26:1363 (1957).CrossRefGoogle Scholar
  84. Wagner, C. Z. Phys. Chem., Abt. B 21: 25 (1933).Google Scholar
  85. Watanabe, M. Sci. Rept.Tohoku Imp. Univ. I, 22: 893 (1933).Google Scholar
  86. Westrum, E. F., and G. Gronvold. J. Am. Chem. Soc. 81:1777 (1959).CrossRefGoogle Scholar
  87. Yakovleva, R. Ya., and T. N. Rezukhina. Zh. Fiz. Khim. 34: 819 (1961).Google Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • Nikita Aleksandrovich Toropov
    • 1
  • Valentin Pavlovich Barzakovskii
    • 1
  1. 1.Leningrad Institute of Silicate ChemistryAcademy of Sciences of the USSRRussia

Personalised recommendations