Advertisement

Abstract

According to the data of Shchukarev and Semenov (1958), GeO2 evaporating from the surface of a platinum strip (at 1000°C) gives in the vapors the germanium oxides Ge2O2, Ge3O3, GeO, and Ge2O and small amounts of Ge3O2 and GeO2. Moreover, atomic germanium and oxygen (molecular and atomic) were present in the vapor. The enthalpies obtained by these authors are given below.

Keywords

Dissociation Energy Thermodynamic Potential Vanadium Oxide Gaseous Oxide Uranium Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ackermann, R. J., P. W. Gilles, and R. J. Thorn. J. Am. Chem. Soc. 78:1767 (1956).CrossRefGoogle Scholar
  2. Ackermann, R. J., P. W. Gilles, and R. J. Thorn. J. Chem. Phys. 25:1089 (1956).CrossRefGoogle Scholar
  3. Ackermann, R. J., and R. J. Thorn. J. Am. Chem. Soc. 78:4169 (1956).CrossRefGoogle Scholar
  4. Ackermann, R. J., and R. J. Thorn. XVI Congrès Internat. Chim. Pure et Appl., 1957. Mémoires Presentés a la Section Chimie Minéral, Paris (1958), pp. 667–684.Google Scholar
  5. Ackermann, R. J., and R. J. Thorn. “Vaporization of oxides,” Progr. Ceram. Sci. 1: 85 (1961).Google Scholar
  6. Ackermann, R. J., R. J. Thorn, M. Tetenbaum, and C. Alexander. J. Phys. Chem. 64: 350 (1960).CrossRefGoogle Scholar
  7. Ackermann, R. J., R. J. Thorn, and G. H. Winslow. Abstracts of Scientific Papers Presented at the Eighteenth International Congress on Pure and Applied Chemistry (1961), p. 125.Google Scholar
  8. Allen, N. P., O. Kubaschewskii, and von Goldbeek. J. Electrochem. Soc. 98:417 (1951).CrossRefGoogle Scholar
  9. Ariya, S.M., et al. Zh. Neorgan. Khim. 2:18 (1957);Google Scholar
  10. Ariya, S.M., et al. Vestn. Leningr. Univ., Ser. Fiz. i Khim., No. 22:96 (1958).Google Scholar
  11. Bandel, G. Arch. Eisenhüttenw. 15: 271 (1941).Google Scholar
  12. Beckett, R.W., et al. Preliminary Report on the Thermodynamic Properties of Lithium, Beryllium, Magnesium, Aluminum, and Their Compounds with Oxygen, Hydrogen, Fluorine, and Chlorine, Natl. Bur. Std. (U. S.) Rept. 6297 (January 1, 1959).Google Scholar
  13. Berkowitz, J., W. Chupka, and M. G. Inghram. J. Chem. Phys. 27: 85 (1957).CrossRefGoogle Scholar
  14. Berkowitz, J., W. A. Chupka, and M. G. Inghram. J. Phys. Chem. 61:1569 (1957).CrossRefGoogle Scholar
  15. Berkowitz, J., W. A. Chupka, and M. G. Inghram. J. Chem. Phys. 26: 842 (1957).CrossRefGoogle Scholar
  16. Blackburn, P. E. Abstracts of Scientific Papers Presented at the Eighteenth International Congress on Pure and Applied Chemistry (1961), pp. 105–106.Google Scholar
  17. Blackburn, P. E., M. Hoch, and H. L. Johnston. J. Phys. Chem. 62: 769 (1958).CrossRefGoogle Scholar
  18. Brewer, L., and J. Margrave. J. Phys. Chem. 59:421 (1955).CrossRefGoogle Scholar
  19. Brewer, L., and G. M. Rosenblatt. Chem. Rev. 61(3): 257–263 (1961).CrossRefGoogle Scholar
  20. Büchler, A. American Institute of Chemical Engineers Preprint 10 for Symposium on Thermodynamics of Jet and Rocket Propulsion, Thermodynamic Properties of Some Gaseous Metal Compounds (1959).Google Scholar
  21. Bulewicz, E. M., and T. M. Sugden. Trans. Faraday Soc. 55: 720 (1959).CrossRefGoogle Scholar
  22. Burns, R. P., G. De Maria, J. Drowart, and R. T. Grimley. J. Chem. Phys. 82:1363 (1960).CrossRefGoogle Scholar
  23. Caplan, D., and M. Cohen. J. Electrochem. Soc. 108:438–442 (1961).CrossRefGoogle Scholar
  24. Chupka, W. A. Argonne National Laboratory Reports ANL-5753 and ANL-5786 (1957).Google Scholar
  25. Chupka, W. A., J. Berkowitz, and C. F. Giese. J. Chem. Phys. 30:827 (1959)CrossRefGoogle Scholar
  26. Chupka, W. A., J. Berkowitz, and M. G. Inghram. J. Chem. Phys. 26:1207 (1957).CrossRefGoogle Scholar
  27. Coughlin, J. N. Contributions to the Data on Theoretical Metallurgy XII, Heats and Free Energies of Formation of Inorganic Oxides, U. S. Bureau of Mines Bulletin, No. 542 (1954).Google Scholar
  28. Darnell, A. J., and W. A. McCollum. High-Temperature Reactions of Thorium and Thoria and the Vapor Pressure of Thoria, U. S. Atomic Energy Comm. NAA-SR-6498; see Chem. Abstr. 56(l): 32 (1962).Google Scholar
  29. Darnell, A. J., W. A. McCollum, and T. A. Milne. J. Phys. Chem. 64: 341–346 (1960).CrossRefGoogle Scholar
  30. De Maria, G., R. P. Burns, J. Drowart, and M. G. Inghram. J. Chem. Phys. 32(5): 1373–1377 (1960).CrossRefGoogle Scholar
  31. Devries, R. C., and R. Roy. Bull. Am. Ceram. Soc. 33: 370 (1954).Google Scholar
  32. Domagala, R. F., and D. J. McPherson. J. Metals, AIME Trans. 200: 238 (1954).Google Scholar
  33. Drowart, J., G. De Maria, R. P. Burns, and M. G. Inghram. J. Chem. Phys. 32(5): 1366–1372 (1960).CrossRefGoogle Scholar
  34. Edwards, J. W., H. L. Johnston, and P. E. Blackburn. J. Am. Chem. Soc. 73:4727 (1951).CrossRefGoogle Scholar
  35. Edwards, J. W., H. L. Johnston, and W. E. Ditmars. J. Am. Chem. Soc. 75: 2467 (1953).CrossRefGoogle Scholar
  36. Evans, W. H., D. D. Wagman, and E. J. Rosen. Thermochemistry and Thermodynamic Functions of Some Boron Compounds, Natl. Bur. Std. (U. S.) Rept. 6252 (1958).Google Scholar
  37. Gaydon, A. G. Dissociation Energy and Spectra of Diatomic Molecules, London (1953).Google Scholar
  38. Gilles, P. W. “High-temperature chemistry,” Ann. Rev. Phys. Chem., Vol. 12 (1961).Google Scholar
  39. Gleiser, M. Trans. Met. Soc. AIME 221(2): 300 (1961).Google Scholar
  40. Glemser, O., and R. von Haeseler. Abstracts Scientific Papers Presented at the Eighteenth International Congress on Pure and Applied Chemistry (1961), pp. 113–114.Google Scholar
  41. Glemser, O., and H.-H. Weizenkorn. Naturwissenschaften 48(23): 715–716 (1961).CrossRefGoogle Scholar
  42. Golubtsov, I. V., A. V. Lapitskii, and V. K. Shiryaev. Izv. Vysshikh Uchebn. Zavedenii, Khim. i Khim. Tekhnol. 3(4): 571–574 (1960).Google Scholar
  43. Grimley, R. T., R. P. Burns, and M. G. Inghram. J. Chem. Phys. 34: 664 (1961).CrossRefGoogle Scholar
  44. Groves, W. A., M. Hoch, and H. L. Johnston. J. Phys. Chem. 59:127 (1955).CrossRefGoogle Scholar
  45. Guthmann, K. Radex Rundschau (1958), pp. 3–30, 253–276, 323–347.Google Scholar
  46. Hägg, G., and A. Magneli. Arkiv Kemi, Mineral., Geol. 19:1 (1945).Google Scholar
  47. Hampson, G. C., and A. J. Stosick. J. Am. Chem. Soc. 60:1814 (1938).CrossRefGoogle Scholar
  48. Hoch, M., and H. L. Johnston. J. Am. Chem. Soc. 76:4833 (1954).CrossRefGoogle Scholar
  49. Hoch, M., M. Nakata, and H. L. Johnston. J. Am. Chem. Soc. 76: 2651 (1954).CrossRefGoogle Scholar
  50. Huber, E. J., E. Holley, and E. H. Meierkord. J. Am. Chem. Soc. 74: 3406 (1952).CrossRefGoogle Scholar
  51. Inghram, M. G., W. A. Chupka, and J. Berkowitz. Proceedings of the 1956 International Conference on Astrophysics (1956).Google Scholar
  52. Inghram, M. G., W. A. Chupka, and J. Berkowitz. J. Chem. Phys. 27: 569 (1957).CrossRefGoogle Scholar
  53. Inghram, M. G., and J. Drowart. Mass Spectrometry Applied to High Temperature Chemistry, Proceedings of an International Symposium of High-Temperature Technology. [Russian translation]: Investigations at High Temperature, IL (1962).Google Scholar
  54. Katzin, L. I. J. Am. Chem. Soc. 80:5908 (1958).CrossRefGoogle Scholar
  55. Kelley, K. K. Contributions to the Data of Theoretical Metallurgy. XIII, U. S. Bureau of Mines Bulletin, No. 584 (1960).Google Scholar
  56. Kolchin, O. P., V. N. Sumarokova, and N. P. Chuveleva. At. Energ. (USSR) 3:575 (1957).Google Scholar
  57. Krishnamurty, S. G. Proc. Phys. Soc. (London) 64A: 852 (1951).Google Scholar
  58. Kubaschewskii, O. Trans. Brit. Ceram. Soc. 60(1): 71 (1961).Google Scholar
  59. Kubaschewskii, O., and W. A. Dench. J. Inst. Metals 82: 87 (1953/54).Google Scholar
  60. Lagerqvist, A., and L. E. Selin. Arkiv Fysik 12:553 (1957).Google Scholar
  61. Magneli, A., G. Anderson, B. Blomberg, and L. Kihlborg. Anal. Chem. 24:1998 (1952).CrossRefGoogle Scholar
  62. Makarov, E. S. Dokl. Akad. Nauk SSSR 139(3): 612–615 (1961).Google Scholar
  63. Margrave, J. In: Physicochemical Measurements at High Temperatures, J. O’M. Bockris, J. L. White, and J. D. Mackenzie (eds.) (1959).Google Scholar
  64. O’Brien, C. J., J. R. Perrin, and J. Perrine. Kinetics, Equilibria, and Performance of High-Temperature Systems, G. S. Bahn and E. E. Zukoski (eds.) (1960), pp. 5–17.Google Scholar
  65. Osborne, D. W., and E. W. Westrum. J. Chem. Phys. 21:1884 (1953).CrossRefGoogle Scholar
  66. Phillips, J. G. Astrophys. J. 115:567 (1952).CrossRefGoogle Scholar
  67. Polyakov, A. Ya. Zh. Fiz. Khim. 20:1021 (1946).Google Scholar
  68. Rostoker, W. The Metallurgy of Vanadium [Russian translation] (1959).Google Scholar
  69. Schönberg, N. Acta Chem. Scand. 8: 240 (1954).CrossRefGoogle Scholar
  70. Shapiro, E. J. Am. Chem. Soc. 74:5233 (1952).CrossRefGoogle Scholar
  71. Shchukarev, S. A., and G. A. Semenov. Dokl. Akad. Nauk SSSR 120(5): 1059–1061 (1958).Google Scholar
  72. Shchukarev, S. A., G. A. Semenov, and K. E. Frantseva. Zh. Neorgan. Khim. 4(11): 2638 (1959).Google Scholar
  73. Shchukarev, S. A., G. A. Semenov, and K. E. Frantseva. Dokl. Akad. Nauk SSSR 145(1): 119 (1962).Google Scholar
  74. Shchukarev, S. A., G. A. Semenov, and K. E. Frantseva. Izv. Vysshikh Uchebn. Zavedenii, Khim. i Khim. Tekhnol. 5:2 (1962).Google Scholar
  75. Skinner, G. B., and H. L. Johnston. J. Am. Chem. Soc. 73:4549 (1951).CrossRefGoogle Scholar
  76. Spitsyn, V. I., L. I. Zemlyakova, I. E. Mikhailenko, V. V. Gromov, and I. E. Zimakov. Dokl. Akad. Nauk SSSR 139(5) (1961).Google Scholar
  77. Spitsyn, V. I., and I. E. Zimakov. Dokl. Akad. Nauk SSSR 139(3): 654–657 (1961).Google Scholar
  78. Starodubtsev, S. V., and Yu, I. Timokhina. Zh. Tekhn. Fiz. 19: 606 (1949).Google Scholar
  79. U. S. Bureau of Mines Bulletin, No. 542 (1954).Google Scholar
  80. Warshaw, I., and M. L. Keith. J. Am. Chem. Soc. 37:161 (1954).Google Scholar
  81. Wartenberg, H. Z. Anorg. Allgem. Chem. 176: 349–362 (1928);CrossRefGoogle Scholar
  82. Wartenberg, H. Z. Anorg. Allgem. Chem. 178:183 (1930);Google Scholar
  83. Wartenberg, H. Z. Anorg. Allgem. Chem. 196: 375 (1931);Google Scholar
  84. Wartenberg, H. Z. Anorg. Allgem. Chem. 208: 375 (1932);Google Scholar
  85. Wartenberg, H. Z. Anorg. Allgem. Chem. 230:261 (1937);CrossRefGoogle Scholar
  86. Wartenberg, H. Z. Anorg. Allgem. Chem. 232:183(1937).CrossRefGoogle Scholar
  87. Wartenberg, H. Arch. Eisenhüttenw. 30(10): 585–587 (1959).Google Scholar
  88. Wasilewskii, R. J. J. Am. Chem. Soc. 75:1001 (1953).CrossRefGoogle Scholar
  89. Weinreich and Danforth. Phys. Rev. 88: 953 (1952).CrossRefGoogle Scholar
  90. Wilms, G. R., and T. W. Rea. J. Less-Common Metals 1:411 (1959).CrossRefGoogle Scholar
  91. Zimakov, I. E., and V. I. Spitsyn. Dokl. Akad. Nauk SSSR 141(6): 1400–1402 (1961).Google Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • Nikita Aleksandrovich Toropov
    • 1
  • Valentin Pavlovich Barzakovskii
    • 1
  1. 1.Leningrad Institute of Silicate ChemistryAcademy of Sciences of the USSRRussia

Personalised recommendations