Radiative Corrections to Weak and Electromagnetic Processes

  • M. Veltman
Conference paper
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 61)


At this moment the Weinberg-GIM model1) of weak and e.m. interactions agrees very well to within some 10 %, with the low energy data. Up to now no explicit verification has been made of the existence of vector bosons, charged and neutral, and also not of the Higgs system. In other words, we have no assurance that the model is correct above 30 GeV, and it must be stressed that this is no pure formality. As more and more elementary particles are discovered, physicists start suspecting that the particles that we call elementary today (quarks and leptons) may turn out to be composite tomorrow. And in particular this may be true for the above mentioned objects, the vector bosons and the Higgs particle.


Higgs Mass Radiative Correction Vector Boson Negative Real Axis Wave Function Renormalization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    S. Bludman, Il Nuovo Cim. 9 (1958) 433MathSciNetCrossRefGoogle Scholar
  2. 1a).
    S. Glashow, Nucl. Phys. 22 (1961) 579CrossRefGoogle Scholar
  3. 1b).
    S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264ADSCrossRefGoogle Scholar
  4. 1c).
    P. Roy and J. Pestiaux, Phys. Rev. Let. 23 (1969) 349ADSCrossRefGoogle Scholar
  5. 1d).
    Y. Hara, Phys. Rev. 134 (1964) B701ADSCrossRefGoogle Scholar
  6. 1e).
    S. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2 (1970) 1285ADSGoogle Scholar
  7. 2).
    G. ’t Hoolt, Nucl. Phys. B35 (1971) 167ADSGoogle Scholar
  8. 3).
    M. Veltman, Varenna school 1977Google Scholar
  9. 4).
    4) A. Sirlin, Nucl. Phys. B71 (1974) 29ADSCrossRefGoogle Scholar
  10. 4a).
    M. Roos, Nucl. Phys. B77 (1974) 420ADSCrossRefGoogle Scholar
  11. 4b).
    M. Nagels et al., Nucl. Phys. B109 (1976) 1ADSCrossRefGoogle Scholar
  12. 5).
    G. Passarino and M. Veltman, Nucl. Phys. B, 1979Google Scholar
  13. 6).
    M. Consoli, Nucl. Phys. B, 1979Google Scholar
  14. 7).
    M.E. Lemoine and M. Veltman, Nucl. Phys. B, 1979Google Scholar
  15. 8).
    W. Bardeen, R. Gastmans and B. Lautrup, Nucl. Phys. B46 (1972) 319ADSCrossRefGoogle Scholar
  16. 8a).
    M. Chanowitz, M. Furman and I. Hinchlille, Nucl. Phys. B, 1979Google Scholar
  17. 9).
    M. Veltman, Acta Phys. Pol. B8 (1977) 475Google Scholar
  18. 9a).
    M. Veltman, Phys. Let. 7OB (1977) 253ADSGoogle Scholar
  19. 10).
    M. Veltman, Nucl. Phys. B123 (1977) 89ADSCrossRefGoogle Scholar
  20. 11).
    M. Chánowitz, M. Furman and I. Hinchlille, Phys. Let. 78B (1978) 285ADSGoogle Scholar
  21. 12).
    Ch. Llewellyn-Smith, Phys. Let. B46 (1973) 233ADSGoogle Scholar
  22. 12a).
    J. Corn-wall, D. Levin and G. Tiktopoulos, Phys. Rev. Let. 30 (1973) 1268ADSCrossRefGoogle Scholar
  23. 13).
    D. Dicus and V. Mathur, Phys. Rev. D7 (1973) 3111ADSGoogle Scholar
  24. 14).
    Phys. Rev. D16 (1977) 1519ADSGoogle Scholar
  25. 14a).
    B.W. Lee, Phys. Rev. Let. 38 (1977) 888; Phys. Rev. D16 (1977) 1519ADSGoogle Scholar
  26. 15).
    G. ’t Hooft and M. Veltman, Nucl. Phys. B153 (1979) 365.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • M. Veltman
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations