Steam Turbine Materials

  • J. T. Adrian Roberts
Part of the Modern Perspectives in Energy book series (MOAC)


The modern steam turbines rotate at 1800 or 3600 rpm and produce a “shaft output” of 800–300 MW. Less than 50 years ago, a machine with the same rpm was rated at less than 200 MW. The underlying reason for the trend to large size is the economy of scale, i.e., the lower capital cost in dollars per kilowatt as size increases.


Crack Growth Rate Steam Turbine Crevice Corrosion Turbine Rotor Creep Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Wahlster and R. Schumann, A Contribution to the Electroslag Remelting of Large Forging Ingots, in: Proceedings of the 4th International Symposium on Electroslag Remelting Processes ,Tokyo, Japan, 1973, Japan Iron and Steel Institute.Google Scholar
  2. 2.
    R. H. Koppe and E. A. Olson, Nuclear and Large Fossil Unit Operating Experience, EPRI NP-1191 (September 1979).Google Scholar
  3. 3.
    C. H. Wells and F. E. Gelhaus, Structural Integrity of Steam Turbine Rotors, in: Conference on Structural Integrity Technology ,Washington, D.C., May 9–11, 1979, J. P. Gallagher and T. W. Crooker, eds., American Society of Mechanical Engineers.Google Scholar
  4. 4.
    J. M. Hodge and I. L. Mogford, U.K. Experience of Stress-Corrosion Cracking in Steam Turbine Discs, Proc. Inst. Mech. Eng., 193, 93–109 (1979).CrossRefGoogle Scholar
  5. 5.
    S. H. Bush, A Reassessment of Turbine-Generation Failure Probability, Nucl. Safety ,19, 681–698 (1978).Google Scholar
  6. 6.
    L. D. Kramer and D. Randolph, Analysis of TVA Gallatin No. 2 Rotor Burst. Part 1: Metallurgical Considerations, in: 1976 ASME-MPC Symposium on Creep-Fatigue In teraction ,R. M. Curran, ed., Metal Properties Council Publication MPC-3.Google Scholar
  7. 7.
    D. A. Weisz, Analysis of TV A Gallatin No. 2 Rotor Burst. Part II: Mechanical Analysis, in: 7976 ASME-MPC Symposium on Creep-Fatigue Interaction ,R. M. Curran, ed., Metals Properties Council Publication MPC-3.Google Scholar
  8. 8.
    EPRI Steam-Turbine-Related Research Projects, Electric Power Research Institute, EPRI NP-888-SR (August 1978).Google Scholar
  9. 9.
    C. H. Wells, Reliability of Steam Turbine Rotors, EPRI NP-923-SY, Project 502, summary report (October 1978).Google Scholar
  10. 10.
    H. C. Smith and G. S. Hartman, Manufacture of Large Generator Rotor Forgings over 135 Metric Tons, presented at the International Forgemasters Meeting, Terni, Italy, May 5–9, 1970.Google Scholar
  11. 11.
    I. Roman, C. A. Rau, Jr., A. S. Tetelman, and K. Ono, Fracture and Fatigue Properties of 1Cr-Mo-V Bainitic Turbine Rotor Steels, Electric Power Research Institute EPRI NP-1023 Research Project 700–1, Tech. Rep (March 1979).Google Scholar
  12. 12.
    J. R. Weeks, Stress Corrosion Cracking in Turbine Rotors in Nuclear Powered Reactors, Brookhaven National Laboratory, BNL-NUREG 22689-R, informal report (June 1978).Google Scholar
  13. 13.
    F. F. Lyle, Jr., A. J. Basche, H. C. Burghard, Jr., and G. R. Leverant, Stress Corrosion Cracking of Steels in Low-Pressure Turbine Environments, paper presented at Corrosion ’80, Chicago, March 1980.Google Scholar
  14. 14.
    R. E. Sperry, S. Toney, and D. J. Shade, Some Adverse Effects of Sress Corrosion in Steam Turbines, J. Eng. Power ,255–260 (April 1977).Google Scholar
  15. 15.
    D. Weinstein, BWR Environmental Cracking Margins for Carbon Steel Piping; First Semi-Annual Progress Report, July 1978 to December 1978, General Electric Report NEDC-24625 (January 1979), EPRI Contract No. RP 1248–1.Google Scholar
  16. 16.
    B. L. King and G. Wigmore, Temper Embrittlement in a 3% Cr-Mo Turbine Disc Steel, Metall. Trans. A ,7, 1761–1767 (1976).CrossRefGoogle Scholar
  17. 17.
    C. J. McMahon, Jr., Problems of Alloy Design in Pressure Vessel Steels, in: Funda mental Aspects of Structural Alloy Design ,R. I. Jaffee and B. A. Wilcox, eds., Battelle Institute Materials Science Colloquia 1975, Plenum Press (1976).Google Scholar
  18. 18.
    B. W. Bussert, R. M. Curran, and G. C. Gould, The Effect of Water Chemistry on the Reliability of Modern Large Steam Turbines, J. Eng. Power ,1–6 (1978).Google Scholar
  19. 19.
    O. Jonas, Identification and Behavior of Turbine Steam Impurities, Paper 124, Corrosion 77, NACE, Houston, 1977.Google Scholar
  20. 20.
    G. A. Clarke, T. T. Shih, and L. D. Kramer, Final Report Research Project: EPRI RP502, Task IV, Mechanical Properties Testing, Reliability of Steam Turbine Rotors (March 1978).Google Scholar
  21. 21.
    C. E. Jaske and H. Mindlin, Elevated Temperature Low-Cycle Fatigue Behavior of 21/4Cr-1Mo-1/4V Steels, Symposium on 21/4 Chrome-1 Molybdenum Steel in Pressure Vessels and Piping ,Metal properties Council, Second Annual Pressure Vessels and Piping Conference, Denver, September 1970, ASME Publication G11 (1971), pp. 137–210.Google Scholar
  22. 22.
    R. M. Curran and D. M. Wundt, Continuation of a Study of Low-Cycle Fatigue and Creep Interaction in Steels at Elevated Temperatures, in: 1976 ASME-MPC Symposium on Creep-Fatigue Interaction ,ASME Publication G113 (1976) pp. 203–282.Google Scholar
  23. 23.
    R. M. Goldhoff and H. J. Beattie, Jr., The Correlation of High-Temperature Properties and Structures in lCr-Mo-V Forging Steels, Trans. Metall. Soc. AIME ,233,1743–1756 (1965).Google Scholar
  24. 24.
    F. E. Gelhaus, private communication, Electric Power Research Institute, Palo Alto, California (September 1979).Google Scholar
  25. 25.
    J. S. Takhar, R. V. Collins, J. E. Shaefer, C. D. Bucska, and J. Saez, Run/Retire Decision on a 26-Year-01d LP Turbine Rotor Based on Boresonic and Material Test Results and Fracture Mechanics Analysis, paper presented to American Power Conference, April 1979.Google Scholar
  26. 26.
    Moisture Erosion: We begin to learn, Electr. World ,46–49 (February 15, 1972).Google Scholar
  27. 27a.
    H. R. Tipler, The Role of Trace Elements in Creep Embrittlement and Cavitation of Cr-Mo-V Steels in: International Conference on Properties of Heat-Resistant Steels, Vol. 2, Paper 7.4, Dusseldorf (May 1972).Google Scholar
  28. 27b.
    27b. H. R. Tipler, The Influence of Purity on the Strength and Ductility in Creep of Cr-Mo-V Steels of Varied Microstructures, Philos. Trans. R. Soc. London, Ser. A, 295, 213–233 (1980).CrossRefGoogle Scholar
  29. 28.
    L. R. Cooper, Advanced Technology for Producing Large Forging Ingots by Central Zone Remelting, presented at the International Forgemasters Meeting, Paris, France, April 20–25, 1975.Google Scholar
  30. 29.
    R. A. Wood, Status of Electroslag Processing for Production of Large Rotor Forgings, EPRI FP-799, TPS 77–721, final report (July 1978).Google Scholar
  31. 30.
    R. I. Jaffee, Metallurgical Problems and Opportunities in Coal-Fired Steam Power Plants, Metall. Trans. A ,10, 139–164 (1979).CrossRefGoogle Scholar
  32. 31.
    Y. Murakami, J. Watanabe, and S. Mima, Heavy Section Cr-Mo Steels for Hydro generation Services, paper presented at Workshop on High-Temperature Hydrogen Attack of Steels, May 24–25, 1979, Electric Power Research Institute.Google Scholar
  33. 32.
    G. M. Spienk, Reversible Temper Embrittlement of Rotor Steels, Metall. Trans. A ,8, 135–143 (1977).CrossRefGoogle Scholar
  34. 33.
    C. J. McMahon, Jr., S. Takayama, T. Ogura, Shin Chen Fu, J. C. Murza, W. R. Graham, A. C. Yen, and R. Didio, The Elimination of Impurity-Induced Embrittlement in Steels. Part 1: Impurity Segregation and Temper Embrittlement, EPRI Report RP559 (July 1980).Google Scholar
  35. 34.
    J. M. Capus, The Mechanism of Temper Brittleness, in: Temper Embrittlement in Steel ,ASTM STP 407, pp. 3–19, ASTM, Philadelphia (1968).Google Scholar
  36. 35.
    A. Joshi and D. F. Stein, Temper Embrittlement of Low-Alloy Steels, In: Temper Embrittlement of Alloy Steels ,ASTM STP 499, pp. 59–89, ASTM, Philadelphia (1972).CrossRefGoogle Scholar
  37. 36.
    R. A. Wood, Status of Titanium Blading for Low-Pressure Steam Turbines, EPRI AF-445, TPS 76–641, final report (February 1977).Google Scholar
  38. 37.
    T. M. Rust, B. B. Seth, and R. E. Warner, Operating Experience with Titanium, Met. Prog. ,62–66 (July 1979).Google Scholar
  39. 38.
    S. M. DeCorso, Erosion Tests of Steam Turbine Blade Materials, ASTM Proceedings 64 ,pp. 782–796 (1964).Google Scholar
  40. 39.
    W. G. Steltz, Turbine Cycle Performance Improvement through Titanium Blades, EPRI AF-903, Project TPS 77–746, interim report (September 1978).Google Scholar
  41. 40.
    G. Lütgering, Influence of Texture and Microstructure on Properties of Ti-6A1-4V as LP Turbine Blading Material, Electric Power Research Institute, EPRI Project RP 1266–1, Progress Report, May 5, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. T. Adrian Roberts
    • 1
  1. 1.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations