Advertisement

Heat Exchanger Materials

  • J. T. Adrian Roberts
Part of the Modern Perspectives in Energy book series (MOAC)

Abstract

As the name implies, the heat exchanger serves to transfer heat between coolant circuits in a power plant. The steam generator, intermediate heat exchanger (IHX), and condenser were introduced in Chapter 1 as the components employed for this purpose in nuclear systems. To reiterate, the PWR requires a steam generator, the LMFBR (and most probably the CTR) requires both a steam generator and IHX, and all reactors require a condenser.

Keywords

Austenitic Stainless Steel Stress Corrosion Steam Generator Ferritic Steel Condenser Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ph. Berge and J. R. Donati, An Evaluation of PWR Steam Generator Tubing Alloys, Nucl. Energ. ,17, 291–299 (1978).Google Scholar
  2. 2.
    R. Garasey, Corrosion of PWR Steam Generators, Central Electricity Generating Board, U.K. Report RD/L/N/4/79, Job No. VF163 (March 1979).Google Scholar
  3. 3.
    C. R. Brinkman and M. Katcher, Materials Technology for LMFBR Steam Generators, Met. Prog. ,54–61 (July 1979).Google Scholar
  4. 4.
    J. M. Kendall, LMFBR Steam Cycles-Is Efficiency the Ultimate Goal?, paper presented at 1979 Annual Meeting of American Nuclear Society, Georgia, June 3–7, 1979; summary in Trans. Am. Nucl. Soc. ,32, 564–565 (1979).Google Scholar
  5. 5a.
    Pool Type LMFBR Plant 1000 MW(e) Phase A Extension 2 Designs, Electric Power Research Institute Reports NP-1014-SY (GE); NP-1015-SY (AI) and NP-1016-SY (W).Google Scholar
  6. 5b.
    B. E. Dawson, Preliminary Design: Duplex Tube Low-Pressure Saturated Steam Generator for Large LMFBR Plant, NP1219, EPRI Research Project 620–29 Final October 1979 report.Google Scholar
  7. 6.
    J. C. Whipple and C. N. Spalaris, Design of the Clinch River Breeder Reactor Plant Steam Generators, Nucl. Technol. ,28, 305–314 (1976).Google Scholar
  8. 7.
    M. G. Robin, Careful Attention to Detail Was Necessary in Developing the Super Phenix Steam Generators, Nucl. Eng. Int. ,46–48 (May 1977).Google Scholar
  9. 8.
    M. Pierrey, M. Antonakas, M. D’Onghia, M. Peyrelongue, and M. Pini Prato, French Fast Breeder Reactor Main Components: The Intermediate Heat Exchangers, in: European Nuclear Conference, Hamburg, Ger any, May 6–11, 1979; Abstract in Trans. Am. Nucl. Soc. ,31, 619–621 (1979).Google Scholar
  10. 9.
    UWMAK-I, A Wisconsin Toroidal Fusion Reactor Design, Fusion Technology Progress Report UWFDM-68 (Vol. II), University of Wisconsin (May 1975).Google Scholar
  11. 10.
    R. G. Hickman, Tritium-Related Materials Problems in Fusion Reactors, in: Critical Materials Problems in Energy Production ,Charles Stein, ed., Academic Press, New York (1976), pp. 189–220.Google Scholar
  12. 11.
    UWMAK-II, A Conceptual D-T Fueled, Helium-Cooled Tokamak Fusion Power Reactor Design: Fusion Technology Progress Report UWFDM-112, University of Wisconsin (May 1975).Google Scholar
  13. 12.
    SOLASE-A Laser Fusion Reactor Study, Fusion Engineering Program Report, UWFDM-220, University of Wisconsin (December 1977).Google Scholar
  14. 13.
    Steam Plant Surface Condenser Leakage Study, EPRI NP-481, Project 624–1, Vol. 1, final report, March 1977, prepared by Bechtel Corp.Google Scholar
  15. 14a.
    O. S. Tatone and R. S. Pathania, Steam Generator Tube Performance: Experience with Water-Cooled Nuclear Power Reactors during 1978, Atomic Energy of Canada Report AEC1-6852 (February 1980).Google Scholar
  16. 14b.
    D. G. Eisenhut, B. D. Liau, J. Strosnider, Summary of Operating Experience with Recirculating Steam Generators, USNRC Report NUREG-0523 (January 1979).Google Scholar
  17. 14c.
    B. D. Liau and J. Strosnider, Summary of Tube Integrity Operating Experience with Once-through Steam Generators, USNRC Report NUREG-0571 (March 1980).Google Scholar
  18. l4d.
    l4d. R. H. Koppe and E. A. Olson, Nuclear and Large Fossil Unit Operation Experience, Report for Electric Power Research Institute, EPRI 1191 (1979).Google Scholar
  19. 15.
    W. H. Layman, L. J. Martel, S. J. Green, G. Hetsroni, C. Shoemaker, and J. A. Mundis, Status of Steam Generators, paper presented to American Power Conference, Chicago, Illinois (April 1979).Google Scholar
  20. 16.
    D. Van Rooyen and J. R. Weeks, Denting of Inconel Steam Generator Tubes in Pressurized Water Reactors, final report, BNL-NUREG-50778 (January 1978) Brookhaven National Laboratory, New York.Google Scholar
  21. 17.
    K. E. Stahlkopf, R. E. Smith and T. U. Marston, Nuclear Pressure Boundary Materials Problems and Proposed Solutions, Nucl. Eng. Des. 46, 65–79 (1978).CrossRefGoogle Scholar
  22. 18.
    E. C. Potter and G. M. W. Mann, The Fast Linear Growth of Magnetite on Mild Steel in High-Temperature Aqueous Conditions, Br. Corros. 7., 1, 26–35 (1965).CrossRefGoogle Scholar
  23. 19.
    Stress Analysis of Pressurized Water Reactor Steam Generator Tube Denting Phenomena, EPRI NP-828, Project 700 interim report (July 1978), Failure Analysis Associates.Google Scholar
  24. 20.
    G. S. Was, A Review of the Mechanical, Metallurgical, and Environmental Factors Affecting Cracking of Inconel 600, interim report, EPRI Project RP 1166–3 (October 1978).Google Scholar
  25. 21.
    T. S. Bulischeck, Y. S. Park, and D. Van Rooyen, Stress Corrosion Cracking of Inconel 600 Tubing in Deaerated High-Temperature Water, BNL-NUREG-51027 (June 1979), Brookhaven National Laboratory, New York.Google Scholar
  26. 22.
    I. L. W. Wilson, F. W. Pement, R. G. Aspden, and R. T. Begley, Caustic Stress Corrosion Behavior of Fe-Ni-Cr Nuclear Steam Generator Tubing Alloys, Nucl. Tech nol. ,31, 70–84 (1976).Google Scholar
  27. 23.
    J. Blanchet and H. Coriou, Review of the Corrosion Resistance Properties of Alloy 800 in High-Temperature Steam, in: Proceedings of the Petten International Confer ence on Alloy 800 ,Petten, Netherlands, March 14–16, 1978, W. Betteridge, R. Krefeld, H. Krockel, S. J. Llyod, M. Van de Voorde, and C. Vivante, eds., pp. 241–262.Google Scholar
  28. 24.
    R. S. Pathania, Caustic Cracking of Steam Generator Tube Materials, Corrosion ,34, 149–156 (1978).Google Scholar
  29. 25.
    Ph. Berge, J. R. Donati, B. Prieux, and D. Villard, Caustic Stress Corrosion of Fe-Cr-Ni Austenitic Alloys, Corrosion ,33, 425–435 (1977).Google Scholar
  30. 26.
    S. J. Green, Pressurized Water Steam Generators, paper presented at Nuclear Heat Exchanger Session, American Society of Mechanical Engineers, Nuclear Division Conference, August 18–21, 1980, San Francisco, California.Google Scholar
  31. 27.
    C. M. Chen and G. J. Theus, Chemistry of Corrosion-Producing Salts in Light Water Reactors, EPRI Research Project 967–1, final report, October 1978.Google Scholar
  32. 28.
    Ph. Berge, H. D. Bui, J. R. Donati, and D. Villard, Residual Stresses in Bent Tubes for Nuclear Steam Generators, Corrosion ,32, 357–364 (1976).Google Scholar
  33. 29.
    G. P. Airey, Optimization of Metallurgical Variables to Improve the Stress Corrosion Cracking Resistance of Inconel 600, EPRI NP final report, Project 621–1 (1980), Westinghouse Corp.Google Scholar
  34. 30.
    G. P. Airey, The Effect of Carbon Content and Thermal Treatment on the SCC Behavior of Inconel Alloy 600 Steam Generator Tubing, Corrosion ,35, 129 (1979).Google Scholar
  35. 31.
    Alloy 800: Proceedings of the Petten International Conference ,March 1978, W. Betteridge, R. Krefeld, H. Krockel, S. J. Lloyd, M. Van de Voorde, and C. Vivante, eds. North Holland Publishing Company (1978).Google Scholar
  36. 32.
    S. F. Pugh, A. Status Review of Alloy 800 in Nuclear Application, J. Br. Nucl. Energ. Soc. ,14, 221–226 (1975).Google Scholar
  37. 33.
    A. J. Sedriks, J. W. Schultz, and M. A. Cordovi, Inconel Alloy 690-A New Corrosion Resistant Material, paper presented at Meeting of Stress Corrosion Committee, Japan Society of Corrosion Engineers (April 28, 1978), Boshoku Gijutsu ,28, 82–95 (1979).Google Scholar
  38. 34.
    F. W. Pement, I. L. Wilson, and R. G. Aspden, Stress Corrosion Cracking Studies of High-Nickel Austenitic Alloys in Several High-Temperature Aqueous Solutions, Paper No. 50, Corrosion 79, March 12–16, 1979, Atlanta, Georgia.Google Scholar
  39. 35.
    M. Kowaka, H. Fujikawa, and T. Kobayashi, Development of New Alloy SCR-3 Resistant to Stress-Corrosion Cracking in High-Temperature, High-Pressure Water, paper presented at Golden Gate Metals and Welding Conference: International Advances in Materials, San Francisco, January 31-February 2, 1979.Google Scholar
  40. 36.
    J. A. Shields, Jr., and K. L. Longua, The Effect of Ten-Years Experimental Breeder Reactor II Service on 21/4Cr-1Mo Steel, Nucl. Technol. ,28, 471–481 (1976).Google Scholar
  41. 37.
    M. G. Robin, French Steam Generator Experience-Phenix and Beyond, Nucl. Tech nol. ,28, 482–489 (1976).Google Scholar
  42. 38.
    D. Taylor, Operation of Prototype Fast Reactor Steam Generators Led Directly to Commercial-Size Design, Nucl. Eng. Int. ,49–53 (May 1977).Google Scholar
  43. 39.
    A. D. Evans, A. M. Broomfíeld, J. A. Smedley, and J. A. Bray, Operating Experience with the PFR Evaporators, in: Ferritic Steels for Fast Reactor Steam Generators ,Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., Vol. 1, pp. 3–15, British Nuclear Energy Society, London (1978).Google Scholar
  44. 40.
    P. Patriarca, S. D. Harkness, J. M. Duke, and L. R. Cooper, U.S. Advanced Materials Development Program, Nucl. Technol. ,28, 516–536 (1976).Google Scholar
  45. 41.
    C. Willby and J. Walters, Material Choices for the Commercial Fast Reactor Steam Generators, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little eds., Vol. 1, pp. 40–49, British Nuclear Energy Society, London (1978).Google Scholar
  46. 42.
    G. C. Bodine, Jr., B. Chakravarti, S. D. Harkness, C. M. Owens, B. Roberts, D. Vandergriff, and C. T. Ward, The Development of a 9Cr Steel with Improved Strength and Toughness, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., Vol. 1, pp. 160–163, British Nuclear Energy Society, London (1978).Google Scholar
  47. 43.
    M. G. Robin and J. Birault, Design Philosophy and Functional Requirements of a Sodium-Heated Steam Generator Made of Ferritic Steel, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of International Conference ,S. F. Pugh and E. A. Little, eds., Vol. 1, pp. 50–54, British Nuclear Energy Society, London (1978).Google Scholar
  48. 44.
    J. M. Duke, C. E. Sessions, and W. E. Roy, Qualification of Alloy 800 for Sodium Heated Steam Generators, in: Proceedings of the International Conference on Liquid Metal Technology in Energy Production, Seven Springs, Pennsylvania, T1D-CONF-760503-P1P2.Google Scholar
  49. 45.
    Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,Vols. 1 and 2, (S. F. Pugh and E. A. Little, eds., British Nuclear Energy Society, London (1978).Google Scholar
  50. 46.
    O. K. Chopra, J. Y. N. Wang, and K. Natesan, Review of Sodium Effects on Candidate Materials for Central Receiver Solar-Thermal Power Systems, Argonne National Laboratory Report, ANL-79-36 (1979).Google Scholar
  51. 47.
    Status of Incoloy Alloy 800 Development for Breeder Reactor Steam Generators, compiled by J. R. DiStefano, ORNL/Sub-4308/3 (December 1978).Google Scholar
  52. 48.
    J. L. Krankota and J. S. Armijo, The Kinetics of Decarburization of 21/4Cr-1% Mo Steel in Sodium, Nucl. Technol. ,24, 225–233 (1974).Google Scholar
  53. 49.
    R. L. Klueh, Thermal Aging Effects on the Mechanical Properties of Annealed 21/4Cr-1Mo Steel, ORNL-5324 (1977), Oak Ridge National Laboratory.Google Scholar
  54. 50.
    O. K. Chopra and K. Natesan, Mechanical Properties Test Data for Structural Materials; quarterly progress report for period ending April 30, 1978, ORNL-5416, p. 78.Google Scholar
  55. 51.
    A. G. Crouch and P. R. Bussey, Corrosion of Ferritic Steels in Flowing Sodium, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 258–263, British Nuclear Energy Society, London (1978).Google Scholar
  56. 52.
    J. Orr, F. R. Beckitt, and G. D. Fawkes, The Physical Metallurgy of Chromium-Molybdenum Steels for Fast Reactor Boilers, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 91–109, British Nuclear Energy Society, London (1978).Google Scholar
  57. 53.
    D. S. Wood, A. B. Baldwin, F. W. Grounds, J. Wynn, E. G. Wilson, and J. Wareing, Mechanical Properties Data on 9% Cr Steel, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 189–192, British Nuclear Energy Society, London (1978).Google Scholar
  58. 54.
    T. Yukitoshi, K. Yoshikawa, K. Tokimasa, T. Kudo, Y. Shida, and Y. Inaba, Development of 9Cr-2Mo Steel for Fast Breeder Reactor Steam Generators, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Confer ence ,S. F. Pugh and E. A. Little, eds., pp. 87–90, British Nuclear Energy Society, London (1978).Google Scholar
  59. 55.
    G. C. Bodine, B. Chakravarti, C. M. Owens, B. W. Roberts, D. M. Vandergriff, and C. T. Ward, A Program for the Development of Advanced Ferritic Alloys for LMFBR Structural Application, US-ERDA Report ORNL-Sub 4291/1 (1977).Google Scholar
  60. 56.
    D. S. Wood, Effects of a Sodium Environment on the Mechanical Properties of Ferritic Steels, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 293–299, British Nuclear Energy Society, London (1978).Google Scholar
  61. 57.
    W. Charnock, J. E. Cordwell, and P. Marshall, The Influence of High-Temperature Sodium on the Structure and Mechanical Properties of 9Cr Steel, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 310–314, British Nuclear Energy Society, London (1978).Google Scholar
  62. 58.
    Sodium Technology Program-Progress Report, WARD-3045Ti-3, Westinghouse Electric Corporation Advanced Reactors Division, Madison, Pennsylvania (1972).Google Scholar
  63. 59.
    H. U. Borgstedt, G. Frees, and A. Marin, Corrosion and Carburization of Incoloy 800 in Liquid Sodium up to 973 K, in: Alloy 800; Proceedings of the Petten International Conference ,W. Betteridge, R. Krefeld, H. Krockel, S. J. Lloyd, M. Van de Voorde, and C. Vivante, eds., pp. 291–295, North Holland Publishing Company (1978).Google Scholar
  64. 60.
    R. S. Fidler, The Effect of Liquid Sodium on the Creep and Rupture Properties of Alloy 800, in: Alloy 800; Proceedings of the Petten International Conference ,W. Betteridge, R. Krefeld, H. Krockel, S. J. Lloyd, M. Van de Voorde, and C. Vivante, eds. pp. 297–302, North Holland Publishing Company (1978).Google Scholar
  65. 61.
    J. H. DeVan and J. C. Griess, Clinch River Breeder Reactor Environmental Effects-General Waterside Corrosion, Nucl. Technol. 28, 398–405 (1976).Google Scholar
  66. 62.
    J. S. Armijo, J. L. Krankota, C. N. Spalaris, K. M. Horst, and F. E. Tippits, Materials Selection and Expected Performance in Near-Term LMFBR Steam Generators, in: Proceedings of the International Conference on Fast Reactor Power Stations ,pp. 189–203, Nuclear Energy Society, London (1974).Google Scholar
  67. 63.
    J. C. Griess, L. V. Hampton, J. H. DeVan, and K. D. Challenger, Corrosion of 21/4Cr-1Mo Steel under Superheat Heat Transfer Conditions, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,Vol. 2, S. F. Pugh and E. A. Little, eds., pp. 367–370, British Nuclear Energy Society, London (1978).Google Scholar
  68. 63a.
    63a. K. B. Challenger, A. K. Miller, and C. R. Brinkman, An Explanation for the Effects of Hold Periods on the Elevated Temperature Fatigue Behavior of 21/4Cr-1Mo Steel, Submitted to the J. Eng. Mater. Technol. (1980).Google Scholar
  69. 64.
    P. Cohen, T. Padden, D. Schmidt, and L. E. Efferding, Accelerated Corrosion Testing of a Sodium-Heated 21/4Cr-1Mo Steam Generator Tube, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,Vol. 2, S. F. Pugh and E. A. Little, eds., pp. 399–402, British Nuclear Energy Society, London (1978).Google Scholar
  70. 65.
    M. E. Indig, Stress Corrosion Studies for 21/4Cr-1Mo Steel, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,Vol. 2, S. F. Pugh and E. A. Little, eds., pp. 408–412, British Nuclear energy Society, London (1978).Google Scholar
  71. 66.
    P. Hurst and H. C. Cowan, The Oxidation of 9CrMo and Other Steels in 6.9 MPa Steam at 748 and 823 K, in: Ferritic Steels for Fast Reactor Steam Generators, Pro ceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 371–377, British Nuclear Energy Society, London (1978).Google Scholar
  72. 67.
    M. I. Manning and E. Metcalfe, Oxidation of Ferritic Steels in Steam, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 378–382, British Nuclear Energy Society, London (1978).Google Scholar
  73. 68.
    G. J. Bignold, Review of Waterside Performance of 9Cr-lMo boiler tube Material, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds. pp. 342–345, British Nuclear Energy Society, London (1978).Google Scholar
  74. 69.
    J. E. Antill, Corrosion of Materials for Sodium-Cooled Fast Reactors, Nucl. Energ. ,17, 313–319 (1978).Google Scholar
  75. 70.
    R. Garnsey, The Generation of Corrosive Conditions in Sodium-Heated Steam Generators, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 383–398, British Nuclear Energy Society, London (1978).Google Scholar
  76. 71.
    S. Leistikow, A Study of the Corrosion of Alloy 800 in High-Temperature Steam, in: Proceedings of the International Conference on Fast Reactor Power Stations ,British Nuclear Energy Society, London (1974).Google Scholar
  77. 72.
    S. Leistikow and R. Kraft, Creep-Rupture Testing of Incoloy 800, in: Alloy 800, Pro ceedings of the Petten International Conference ,W. Betteridge, R. Krefeld, H. Krockel, S. J. Lloyd, M. Van de Voorde, and C. Vivante, pp. 263–270, eds., North Holland Publishing Company (1978).Google Scholar
  78. 73.
    L. Champeix, High-Temperature Corrosion and Mechanical Properties in Sodium Environment, in: Alloy 800, Proceedings of the Petten International Conference ,W. Betteridge R. Krefeld, H. Krockel, S. J. Lloyd, M. Van de Voorde, and C. Vivante eds., pp. 283–289, North Holland Publishing Company (1978).Google Scholar
  79. 74.
    R. Anderson, Analysis of Experimental Data on Material Wastage by Sodium-Water Reaction Jets, Nucl. Energ. ,18, 333–342 (1979).Google Scholar
  80. 75.
    J. F. B. Payne, Production of Metal Wastage Produced by Sodium-Water Reaction Jets, Nucl. Energ. ,18, 327–331 (1979).Google Scholar
  81. 76.
    H. V. Chamberlain, J. H. Coleman, E. C. Kovacic, and A. A. Shoudy, Wastage of Steam-Generator Materials by Sodium-Water Reactions, in: Proceedings of the International Conference on Sodium Technology and Large Fast Reactor Design ,ANL-7520, (1968), pp. 384–409.Google Scholar
  82. 77.
    D. A. Greene, Small Leak Damage and Protection Systems in Steam Generators, in: Proceedings of the International Conference on Liquid Metal Technology in Energy Production ,CONF-760503-P1 (1976), pp. 233–241.Google Scholar
  83. 78.
    K. Tregonning, Calculation of Wastage by Small Water Leaks in Sodium-Heated Steam Generators, in: Proceedings of the International Conference on Liquid Metal Tech nology in Energy Production ,CONF-760503-P1 (1976), pp, 218–225.Google Scholar
  84. 79.
    F. A. Kozlov, G. P. Sergeev, A. R. Sednev, and V. M. Makarov, Studies on Some Problems of Leaks in Sodium-Water Steam Generators, in: Proceedings of the Inter national Conference on Liquid Metal Technology in Energy Production ,CONF-760503-P1 (1976), pp. 202–210.Google Scholar
  85. 80.
    D. W. Sandusky, Small Leak Shutdown, Location and Behavior of LMFBR Steam Generators, in: Proceedings of the International Conference on Liquid Metal Tech nology in Energy Production ,CONF-760503-P1 (1976), pp. 226–232.Google Scholar
  86. 81.
    G. J. Lloyd, Mechanical Properties of Austenitic Stainless Steels in Sodium, At. Energ. Rev. 16, 155–208 (1978).Google Scholar
  87. 82.
    K. Natesan, D. L. Smith, T. F. Kassner, and O. K. Chopra, Influence of Sodium Environment on the Tensile Behavior of Austenitic Stainless Steels, in: ASME Sym posium on Structural Material for Service at Elevated Temperatures in Nuclear Power Generation ,MPC-1 (1975), pp. 302–315.Google Scholar
  88. 83.
    O. K. Chopra and K. Natesan, Representation of Elevated-Temperature Tensile Behavior of Type 304 Stainless Steel in a sodium Environment, J. Eng. Mater. Technol. ,99, 366–371 (1977).CrossRefGoogle Scholar
  89. 84.
    K. Natesan, O. K. Chopra, and T. F. Kassner, Influence of Sodium Environment on the Uniaxial Tensile Behavior of Titanium-Modified Type 316 Stainless Steel, J. Nucl. Mater. ,73, 137–150 (1978).CrossRefGoogle Scholar
  90. 85.
    K. Natesan, O. K. Chopra, and T. F. Kassner, Effect of Sodium on the Creep-Rupture Behavior of Type 304 Stainless Steel, in: Proceedings of the International Conference on Liquid Metal Technology in Energy Production ,CONF-760503-P1 (1976), pp. 338–345.Google Scholar
  91. 86.
    B. Weiss and R. Stickler, Phase Instabilities During High Temperature Exposure of 316 Austenitic Stainless Steel, Metall. Trans. ,3, 851–866 (1972).CrossRefGoogle Scholar
  92. 87.
    G. F. Tisinai, J. K. Stanley, and C. H. Samans, Effect of Nitrogen on Sigma Formation in Cr-Ni Steels at 1200 F (650 C), Trans. AIME ,200, 1259–1267 (1954).Google Scholar
  93. 88.
    A. M. Pritchard, C. F. Knights, G. P. Marsh, K. A. Peakall, R. Perkins, B. L. Myatt and J. E. Antill, Corrosion Behavior of Iron-Chromium Alloys Used as Boiler Tube Materials in Fast Reactor Steam Generators, in: Ferritic Steels for Fast Reactor Steam Generators, Proceedings of the International Conference ,S. F. Pugh and E. A. Little, eds., pp. 360–366, British Nuclear Energy Society, London (1978).Google Scholar
  94. 89.
    H. T. Michels, W. W. Kirk, and A. H. Tuthill, The Role of Corrosion and Fouling in Steam Condenser Performance, Nucl. Energ. ,17, 335–342 (1978).Google Scholar
  95. 90.
    K. D. Efird and D. B. Anderson, Sea Water Corrosion of 90–10 and 70–30 Cu-Ni: 14 Year Exposures, Mater. Perform. ,14, 37–40 (1975).Google Scholar
  96. 91.
    D. B. Anderson and F. A. Badia, Chromium-Modified Copper-Nickel Alloys for Improved Seawater Impingement Resistance, J. Eng. Power ,ser. a, 95, 132–135 (1973).CrossRefGoogle Scholar
  97. 92.
    F. W. Fink and W. K. Boyd, Corrosion Problems in Power Plant Steam Condensers, Topical Report to Copper Development Associations, May 1971, Battelle Columbus Laboratories.Google Scholar
  98. 93.
    C. A. Gleason, Condenser Corrosion, in: The Corrosion Handbook ,H. H. Uhlig, ed., pp. 545–559, John Wiley and Sons, Inc., New York (1948).Google Scholar
  99. 94.
    T. Nosetani, S. Sato, K. Kazama, Y. Yamaguchi, and T. Yasui, Effects of Various Factors on the Performance of Copper Alloy Condenser Tubes, Sumitomo Light Metal Technical Reports, Vol. 12, No. 2, April 1971.Google Scholar
  100. 95.
    T. W. Bostwick, Reducing Corrosion of Power Plant Condenser Tubing (with Ferrous Sulfate), Corrosion ,17,12–19 (1961).Google Scholar
  101. 96.
    R. J. Brigham and E. W. Tozer, Temperature as a Pitting Criterion, Corrosion ,29, 33–36 (1973).Google Scholar
  102. 97.
    Installation List, T1MET Codeweld Condenser Tube, Titanium Metals Corporation of America (April 1976).Google Scholar
  103. 98.
    R. L. Jacobs and J. A. McMaster, Titanium Tubing: Economical Solution to Heat Exchanger Corrosion, Mater. Protect. Perform. 11, 33–38 (1972).Google Scholar
  104. 99.
    Performance of Condensers in Nuclear and Fossil Power Plants, Vols. 1 and 2, R. Stahle, ed., Ohio State University (June 1975).Google Scholar
  105. 100.
    L. C. Covingtori, W. M. Parris, and D. M. McCue, The Resistance of Titanium Tubes to Hydrogen Embrittlement in Surface Condensers, in: Corrosion/76 ,NACE, Houston Texas (March 1970), Paper No. 79.Google Scholar
  106. 101.
    R. J. H. Wanhill, Aqueous Stress Corrosion in Titanium Alloys, Br. Corros. J. ,10, 69–78 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. T. Adrian Roberts
    • 1
  1. 1.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations