Advertisement

Fusion First-Wall/Blanket Materials

  • J. T. Adrian Roberts
Part of the Modern Perspectives in Energy book series (MOAC)

Abstract

At first sight it might appear somewhat incongruous that a discussion on CTR materials should be included in what is admittedly a fission-reactordominated work. However, the intent here is not to embark on a detailed discussion of CTR materials development (which could fill a book in itself) but, rather, to continue the theme developed in preceding chapters by examining the structural integrity aspects of the emerging CTR concepts. Thus discussion is limited to first-wall/blanket designs and material considerations, with particular emphasis being placed on differentiating between those requirements that can be met by existing fission reactor technology and those that are unique to the fusion environment.

Keywords

Fatigue Life Fracture Strength Fusion Reactor Ferritic Stainless Steel Weibull Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Hafele, J. P. Haldren, G. Kessler, and C. L. Kulcinski, Fusion and Fast Breeder Reactors ,International Institute for Applied System Analysis (IIASA) A-2361 Laxenburg, Austria, RR-77-8 (November 1976; Revised July 1977), Chapter IX, pp. 351–436.Google Scholar
  2. 2.
    Fusion Power: Status and Options; Report to Electric Power Research Institute, EPRI ER-510-SR (June 1977), prepared by McDonnell Douglas Astronautics Co.Google Scholar
  3. 3.
    R. L. Jones, T. U. Marston, S. T. Oldberg, and K. E. Stahlkopf, Pressure Boundary Technology Program: Progress 1974 through 1978. Electric Power Research Institute, NP1103-SR (March 1979).Google Scholar
  4. 4.
    R. W. Conn, Magnetic Fusion Reactors, to be published in Fusion ,E. Teller, ed., Academic Press, New York (1980).Google Scholar
  5. 5.
    R. W. Conn, First Wall and Diverter Plate Material Selection in Fusion Reactors, J. Nucl. Mater. ,76 and 78, 103–111 (1978).CrossRefGoogle Scholar
  6. 6.
    L. M. Rovner and G. R. Hopkins, Ceramic Materials for Fusion, Nucl. Technol. ,29, 274–302 (1976).Google Scholar
  7. 7.
    G. G. Trantina, Design Techniques for Ceramics in Fusion Reactors, Nucl. Eng. Des. ,54,67–77(1979).CrossRefGoogle Scholar
  8. 8.
    J. A. Maniscalco, D. H. Berwald, and W. R. Meier, The Material Implications of Design and System Studies for Inertial Confinement Fusion Systems, J. Nucl. Mater. ,85 and 86, 37–46 (1979).CrossRefGoogle Scholar
  9. 9.
    L. A. Booth, Central Station Power Generation by Laser-Driven Fusion, LA-4858-175, Los Alamos Scientific Laboratory (February 1972).CrossRefGoogle Scholar
  10. 10.
    G. R. Hopkins, Design with Ceramics for Fusion Reactors, J. Nucl. Mater. ,85 and 86, 409–414 (1979).CrossRefGoogle Scholar
  11. 11.
    R. W. Conn, T. G. Frank, R. Hancox, G. L. Kulcinski, K. H. Schmitter, and W. M. Stacy, Jr., Fusion Reactor Design II. Report on the 2nd IAEA Technical Committee Meeting and Workshop, Madison, Wisconsin, October 10–21, 1977, Nucl. Fusion 18, 985–1016 (1978).Google Scholar
  12. 12.
    The Fusion Reactor Materials Program Plan, DOE/ET 0032, Vols. 1 to 4 (July 1978).Google Scholar
  13. 13.
    S. N. Rosenwasser, P. Miller, J. A. Dalessandro, J. M. Rawes, W. E. Toffolo, and W. Chen, The Application of Martensitic Stainless Steels in Long Lifetime Fusion First Wall/Blankets, J. Nucl. Mater. ,85 and 86, 177–182 (1979).CrossRefGoogle Scholar
  14. 14.
    F. W. Wiffen, Radiation Effects in Structural Materials for Fusion Reactors, in: Critical Problems in Energy Production ,Charles Stein, ed., Academic Press, New York, (1976), pp. 164–188.Google Scholar
  15. 15.
    E. E. Bloom, F. W. Wiffen, P. J. Maziasz, and J. O. Stiegler, Temperature and Fluence Limits for a Type 316 Stainless Steel Controlled Thermonuclear Reactor First Wall, Nucl. Technol. ,31, 115–122 (1976).Google Scholar
  16. 16.
    E. E. Bloom, Mechanical Properties of Materials in Fusion Reactor First-Wall And Blanket Systems, J. Nucl. Mater. ,85 and 86, 795–804 (1979).CrossRefGoogle Scholar
  17. 17.
    M. Abdou, S. D. Harkness, S. Majumdar, V. Maroni, B. Misra, B. Cramer, J. Davis, D. DeGreece, and D. Kummer, The Establishment of Alloy Development Goals Important to the Commercialization of Tokamak-Based Fusion Reactors, ANL/FPP Technical Memorandum, Number 99, MDCE-1743 (November 1977).Google Scholar
  18. 18.
    R. F. Mattas and D. L. Smith, Model for Life-Limiting Properties of Fusion Reactor Structural Materials, Nucl. Technol. ,39, 186–198 (1978).Google Scholar
  19. 19.
    R. W. Conn, Tokamak Reactors and Structural Materials, J. Nucl. Mater. ,85 and 86, 9–16, (1979).CrossRefGoogle Scholar
  20. 20.
    J. J. Holmes and J. L. Straalsund, Effects of Fast Reactor Exposure on the Mechanical Properties of Stainless Steels, in: International Conference on Radiation Effects in Breeder Reactor Structural Materials ,M. L. Bleiburg and J. W. Bennett, eds., AIME (1977), pp. 53–63.Google Scholar
  21. 21.
    D. J. Michel and G. E. Korth, Effects of Irradiation on Fatigue and Crack Propagation in Austenitic Stainless Steels, in: Proceedings of the International Conference on Ra diation Effects in Breeder Reactor Structural Materials ,Scottsdale, Arizona, June 19–23, 1977, Met. Soc. AIME, pp. 117–137.Google Scholar
  22. 22.
    P. J. Maziasz and E. E. Bloom, Alloy Development for Irradiation Performance, Quarterly Progress Report January-March 1978, DOE/ET-0058/1 (August 1978), pp. 54–81.Google Scholar
  23. 23.
    R. H. Jones, B. R. Leonard, Jr., and A. B. Johnson, Jr., An Assessment of Titanium Alloys for Fusion Reactor First-Wall and Blanket Applications, EPRI-RP1045-3 Project Final Report (1979), Electric Power Research Institute.Google Scholar
  24. 24.
    R. F. Mattas, H. Wiedersich, D. G. Atteridge, A. B. Johnson, and J. F. Remark, Elevated Temperature Tensile Properties of V-15Cr-5Ti Containing Helium Introduced by Ion Bombardment and Tritium Decay, in: Proceedings of the Second ANS Topical Meeting on Technology of Controlled Thermonuclear Fusion ,CONF-760935, U.S. Energy Research and Development Administration (September 1976).Google Scholar
  25. 25.
    M. L. Grossbeck and P. J. Maziasz, in: Alloy Development for Irradiation Performance, Quarterly Progress Report, January-March 1978, DOE/ET-0058/1 (August 1978), pp. 82–85.Google Scholar
  26. 26.
    P. J. Maziasz and E. E. Bloom in: Alloy Development for Irradiation Performance, Quarterly Progress Report, January-March 1978, DOE/ET-0058/1 (August 1978), pp. 40–53.Google Scholar
  27. 27.
    R. E. Gold, D. L. Harrod, R. L. Ammon, R. W. Buckman, Jr., and R. C. Svedberg, Technical Assessment of Vanadium-Base Alloys for Fusion Reactor, in: Alloy Development for Irradiation Performance, Quarterly Progress Report, January-March 1978, DOE/ET-0058/1 (August 1978), pp. 119–127.Google Scholar
  28. 28.
    NUWMAK: A Tokamak Reactor Design Study, University of Wisconsin, Madison, Wisconsin (March 1979), UWFEDM-330, Chapter IX.Google Scholar
  29. 29.
    N. M. Ghoniem and G. L. Kulcinski, The Effect of Pulsed Irradiation on the Swelling of 316 Stainless Steel in Fusion Reactors, Nucl. Eng. Des. ,52, 111–125 (1979).CrossRefGoogle Scholar
  30. 30.
    J. H. De Van, J. E. Seile, and A. E. Morris, Review of Lithium Iron-Base Alloy Corrosion Studies, ORNL/TM-4927, Oak Ridge National Laboratory (1976).Google Scholar
  31. 31.
    R. W. Conn, G. L. Kulcinski, and C. W. Maynard, NUWMAK: An Attractive Medium Field, Medium Size, Conceptual Tokamak Reactor, in: Proceedings of the 3rd Topical Meeting on the Technology of Controlled Thermonuclear Fusion ,American Nuclear Society, Sante Fe, New Mexico, May 9–11, 1978.Google Scholar
  32. 32.
    F. W. Clinard, Electrical Insulators for Magnetically Confined Fusion Reactors, in: Critical Problems in Energy Production ,Charles Stein, ed., Academic Press, New York (1976), pp. 142–163.Google Scholar
  33. 33.
    Special-Purpose Materials for the Fusion Reactor Environment: A Technical Assessment (February 1978) U.S. DOE/ET-0015.Google Scholar
  34. 34.
    L. H. Rovner, R. F. Bourque, and K. Y. Chen, Applications of Low Atomic Number Ceramic Materials to Fusion Reactor First Walls, Electric Power Research Institute, EPR1 ER-216, final report on Project 115–2 (August 1976).Google Scholar
  35. 35.
    G.G. Trantina, Ceramics for Fusion Reactors-Design Methodology and Analysis, J. Nucl. Mater. ,85 and 86, 415–420 (1979).CrossRefGoogle Scholar
  36. 36.
    W. E. Hauth, R. D. Blake, H. L. Rutz and J. M. Dickinson, Fabrication of the 320-cm OD All-Ceramic ZT40 Torus, J. Nucl. Mater. ,85 and 86, 433–438 (1979).CrossRefGoogle Scholar
  37. 37.
    A. Weibull, A Statistical Approach to Engineering Design in Ceramics, Proceedings of the British Ceramic Society ,Vol. 22, pp. 429–452 (1973).Google Scholar
  38. 38.
    R. L. Jones and D. J. Rowcliffe, Tensile-Strength Distributions for Silicon Nitride and Silicon Carbide Ceramics, Caram. Soc. Bull. 58, 836–839 (1979).Google Scholar
  39. 39.
    J. Gittus, Irradiation Effects in Crystalline Solids ,Applied Science Publishers, London (1978), Chapter 10, pp. 475–476.Google Scholar
  40. 40.
    J. T. A. Roberts, Ceramic Utilization in the Nuclear Industry, Powder Metall. Int. ,10, 212 (1978): 11, 24–29 (1979); 11, 72–82 (1979).Google Scholar
  41. 41.
    G. B. Engle and W. P. Eatherly, Irradiation Behavior of Graphite at High Temperature, High Temp.-High Pressures ,4, 119–158 (1972).Google Scholar
  42. 42.
    G. B. Engle, Irradiation Behavior of Nuclear Graphites at Elevated Temperatures, Carbon ,9, 539–554 (1971).CrossRefGoogle Scholar
  43. 43.
    R. J. Price, Thermal Conductivity of Neutron-Irradiated Reactor Graphites, General Atomic Publication No. GA-A13157 (1974).Google Scholar
  44. 44.
    R. J. Price, Thermal Conductivity of Neutron-Irradiated Pyrolytic Silicon Carbide, J. Nucl. Mater. ,46, 268–272 (1973).CrossRefGoogle Scholar
  45. 45.
    R. A. Matheny, J. C. Corelli, and G. G. Trantina, Radiation Damage in Silicon Carbide and Graphite for Fusion Reactor First-Wall Applications, J. Nucl. Mater. ,83, 313–321 (1979).CrossRefGoogle Scholar
  46. 46.
    Conference Proceedings: Low-Activation Materials Assessment for Fusion Reactors. Electric Power Research Institute Publication No. EPR1 ER-328-SR (1977).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. T. Adrian Roberts
    • 1
  1. 1.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations