Fission Reactor Pressure Boundary Materials

  • J. T. Adrian Roberts
Part of the Modern Perspectives in Energy book series (MOAC)


The nuclear pressure boundary can be considered as encompassing those components of the primary and secondary systems of the power plant which contain pressurized coolant, including the reactor vessel, steam generators, steam and primary coolant piping, valves, pumps, nozzles, and assorted small components (refer to Figs. 1-1 to 1-3; Chapter 2). Steam generators are treated separately in Chapter 6.


Fracture Toughness Fatigue Life Weld Metal Crack Growth Rate Fatigue Crack Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    USAEC-Advisory Committee on Reactor Safeguards, The Integrity of Reactor Vessels for Light-Water Power Reactors; WASH-1285, Washington (January 1974).Google Scholar
  2. 2.
    P. P. Zemanick, F. J. Witt, and R. F. Sacramo, Probabilistic Assessment of Primary Piping Integrity, 1976 ANS Annual Meeting, Toronto, Canada, June 14-18,1976, Trans. Am. Nucl. Soc. ,23, 382 (1976).Google Scholar
  3. 3.
    R. H. Koppe and E. A. Olson, Nuclear and Large Fossil Unit Operating Experience, Electric Power Research Institute, EPRI NP-1191 (1979).Google Scholar
  4. 4.
    R. L. Jones, T. U. Marston, S. T. Oldberg, and K. E. Stahlkopf, Pressure Boundary Technology Program: Progress 1974 through 1978. Electric Power Research Institute, NP 1103-SR (March 1979).Google Scholar
  5. 5.
    C. A. Rau, Jr., Quantitative Decisions Relative to Structural Integrity, paper presented at Conference on Structural Integrity Technology, Washington, D.C., May 9-11, 1979, sponsored by Materials Division, ASME.Google Scholar
  6. 5a.
    R. Snaider, BWR Feedwater Nozzle and Control Rod Drive Return Line Nozzle Cracking, NUREG-0619 for comment, U.S. Nuclear Regulatory Commission, Washington, D.C. (April 1980).Google Scholar
  7. 6.
    L. D. Blackburn and R. L. Knecht, Irradiation Effects and Design of LMFBR Permanent Reactor Structures, presented at the 5th International Conference on Reactor Shielding, Knoxville, Tennessee, April 18-23, 1977, Atomkernenergie ,30, 278–281 (1977).Google Scholar
  8. 7.
    P. M. Besuner, L. M. Cohen, and J. L. McLean, The Effects of Location, Thermal Stress, and Residual Stress on Corner Cracks in Nozzles with Cladding, in: Transactions of the 4th International Conference on Structural Mechanics in Reactor Technology ,1977, T. A. Jaeger and B. A. Boley, eds., Paper G4/5.Google Scholar
  9. 8.
    L. A. James, Fatigue Crack Propagation Analysis of LMFBR Piping, in: Coolant Boundary Integrity Consideration in Breeder Reactor Design ,Series PVP-PB-027, R. H. Mallet and B. R. Nair, eds., ASME, New York (1978).Google Scholar
  10. 9.
    T. U. Marston, The EPRI Ductile Fracture Research Program, in: Proceedings of the Seminar on Fracture Mechanics ,ISPRA, Italy, (April 2-6, 1979).Google Scholar
  11. 10.
    J. C. Merkle, G. D. Whitman, and R. H. Bryan, An Evaluation of the HSST Program Intermediate Pressure Vessel Tests in Terms of Light Water Reactor Pressure Vessel Safety, ORNL-TM-5090, Oak Ridge National Laboratory, Oak Ridge, Tennessee (November 1975).Google Scholar
  12. 11.
    D. A. Canonico, The Heavy Section Steel Technology (HSST) Program, Met. Prog. ,32–40 (July 1979).Google Scholar
  13. 12.
    EPRI Ductile Fracture Research Review Document, prepared by Electric Power Research Institute, Palo Alto, California, T. U. Marston, ed., EPRI NP-701-SR (February 1978).Google Scholar
  14. C. E. Turner, Description of Stable and Unstable Crack Growth in the Elastic-Plastic Regime in Terms of Jr Curves, Proceedings of the 11th National Symposium on Fracture Mechanics, ASTM STP 677 ,Philadelphia, Pennsylvania.Google Scholar
  15. 13.
    P. C. Paris, H. Tada, A. Zahoor, and H. Ernst, The Theory of Instability of the Tearing Mode of Elastic-Plastic Crack Growth, U.S. NRC Report NUREG-0311 (1977).Google Scholar
  16. 14.
    J. R. Rice, Elastic-Plastic Models for Stable Crack Growth, in: Mechanics and Mech anism of Crack Growth ,M. J. May, ed., Proc. of Conf. at Cambridge, England, April 1973, Physical Metallurgy Center Publication (1975), pp. 14–39.Google Scholar
  17. 15.
    J. W. Hutchinson and P. C. Paris, The Theory of Stability Analysis of/-Controlled Crack Growth, presented at ASTM Symposium on Elastic-Plastic Fracture, November 1977, ASTM-STP-668 (1979), pp. 37–64.Google Scholar
  18. 16.
    B. A. Szabo, G. G. Musicco, and M. P. Rossow, An Analysis of Ductile Crack Extension in BWR Feedwater Nozzles, EPRI-1311 (June 1979), Project RP1241-1, final report.Google Scholar
  19. 16a.
    H. Tada, P. Paris and G. Irwin, A Parametric Analysis of Tearing Instability of Nozzle Cracks in Pressure Vessels, Proceedings of the Specialist Meeting on Elastoplastic Fracture Mechanics, Daresbury, U.K., May 1978.Google Scholar
  20. 17.
    F. J. Loss, Dynamic Tear Test Investigations of the Fracture Toughness of Thick Section Steel, NRL Report 7056, HSSTP-TR-7, Naval Research Laboratory, Washington, D.C., May 14, 1970.Google Scholar
  21. Flaw Evaluation Procedures: ASME Section XI, prepared by American Society of Mechanical Engineers, New York, New York, T. U. Marston, ed., Electric Power Research Institute Report EPRI NP-719-SR (August 1978).Google Scholar
  22. 19.
    T. U. Marston, Statistical Estimates of Fracture Toughness, Electr. Power Res. Inst. J. ,49–50 (May 1979).Google Scholar
  23. 20.
    K. F. Stahlkopf and T. U. Marston, A Comprehensive Approach to Radiation Embrittlement Analysis, paper presented at IAEA Meeting on Irradiation Embrittlement, Thermal Annealing and Surveillance of Reactor Pressure Vessels, Vienna, Austria, February 26–28, 1979.Google Scholar
  24. 21.
    D. M. Norris, Jr., J. E. Reaugh, B. Moran, and D. F. Quinones, Computer Model for Ductile Fracture: Applications to the Charpy V-Notch Test, Electric Power Research Institute Report EPRI NP-961, Project 603, Phase I Report (January 1979).Google Scholar
  25. 22.
    R. A. Wullaert, W. L. Server, W. Oldfield, and K. E. Stahlkopf, Development of a Statistically-Based Lower Bound Fracture Toughness Curve (Kir Curve), in: Transactions of the 4th International Conference on Structural Mechanics in Reactor Tech nology ,1977, T. A. Jaeger and B. A. Boley, eds., Vol. G, paper G6/5.Google Scholar
  26. 23.
    S. H. Bush, Structural Materials for Nuclear Power Plants, J. Test. Eval. ,2, No. 6, 435–462 (1974).Google Scholar
  27. 24.
    G. R. Odette, W. L. Server, W. Oldfield, R. O. Ritchie, and R. A. Wullaert, Analysis of Radiation Embrittlement Reference Toughness Curves, EPRI Research Project RP886-1, Final Report NP1661 (January 1981).Google Scholar
  28. 25.
    K. Ohmae and T. O. Zeibold, The Influence of Impurity Content on The Radiation Sensitivity of Pressure Vessel Steels: Use of Electron Microprobe for Irregular Surfaces, J. Nucl. Mater. ,43, 254–257 (1972).CrossRefGoogle Scholar
  29. 26.
    F. A. Smidt, Jr., and H. E. Watson, Effect of Residual Elements on Radiation Strengthening in Iron Alloys, Pressure Vessel Steels, and Welds, Metall. Trans. ,3, 2065–2073 (1972).Google Scholar
  30. F. A. Smidt, Jr., and J. A. Sprague, A. Parametric Study of Vacancy Trapping duringGoogle Scholar
  31. 18.
    Irradiation, NRL Memo Report 2531, Naval Research Laboratory, Washington, D.C. (August-October 1972), p. 31.Google Scholar
  32. 28.
    F. A. Smidt, Jr., and J. A. Sprague, Suppression of Void Nucleation by a Vacancy Trapping Mechanism, Scr. Metall. ,7, 495–502 (1973).CrossRefGoogle Scholar
  33. 29.
    An Assessment of the Integrity of PWR Pressure Vessels, report by a study group chaired by Dr. W. Marshall, UKAEA (October 1976).Google Scholar
  34. 30.
    W. G. Clark, Effect of Temperature and Specimen Size on Fatigue Crack Growth in Pressure Vessel Steel, J. Mater. ,6, 134–149 (1971).Google Scholar
  35. 31.
    P. C. Paris, R. J. Bucci, E. T. Wessel, W. G. Clark, Jr., and T. R. Mager, An Extensive Study of Low-Cycle Fatigue Crack growth Rates in A533B and A508 Steels, in: Stress Analysis and Growth of Cracks ,Proceedings of the 1971 National Symposium on Fracture Mechanics, Part 1, ASTM STP-513 (1972), pp. 141–176.Google Scholar
  36. 32.
    F. Shahinian, H. E. Watson, and H. H. Smith, Fatigue Crack Growth in Selected Alloys for Reactor Applications, J. Mater. ,F(4), 527–535 (1972).Google Scholar
  37. 33.
    T. R. Mager and S. A. Legge, Effects of High-Temperature Primary Reactor Water on the Subcritical Crack Growth of Reactor Vessel Steel, HSST Prog. Rep. ORNL-4855, Oak Ridge National Laboratory (April 1973).Google Scholar
  38. 34.
    T. Kondo, Fatigue Crack Propagation Behavior of ASTM A533B and A302B Steel in High-Temperature Aqueous Environment, HSST 6th Annual Information Meeting, Paper No. 6 (April 1972).Google Scholar
  39. 35.
    N. E. Dowling, Geometry Effects and the J-Integral Approach to Elastic-Plastic Fatigue Crack Growth, in: Cracks and Fracture ,ASTM Philadelphia (1976), ASTM STP-601, pp. 19–32.CrossRefGoogle Scholar
  40. 36.
    W. H. Bamford, D.M. Moon, and L. J. Ceschini, Crack Growth Rate Testing in Reactor Pressure Vessel Steels, in: Proceedings of the Fifth Water Reactor Safety Information Meeting ,Gaithersburg, Maryland, November 1977.Google Scholar
  41. 37.
    W. H. Bamford, The Effect of Pressurized Water Reactor Environment on Fatigue Crack Propagation of Pressure Vessel Steels, in: The Influence of Environment on Fatigue ,Inst. Mech. Eng., London (1977).Google Scholar
  42. 38.
    D. A. Hale, J. Yuen, and T. Gerber, Fatigue Crack Growth in Piping and Reactor Pressure Vessel Steels in Simulated BWR Environment, GEAP-24098/NRC-5, General Electric Co. (January 1978).Google Scholar
  43. 39.
    W. H. Bamford, Application of Corrosion Fatigue Crack Growth Rate Data to Integrity Analyses of Nuclear Reactor Vessels, paper presented at 3rd ASME National Congress on Pressure Vessels and Piping, San Francisco, California, June 1979.Google Scholar
  44. 40.
    P. M. Scott, Corrosion Fatigue in Pressure Vessel Steels for Light Water Reactors, Met. Sci. ,396–401 (1979).Google Scholar
  45. 41.
    L. A. James, Fatigue-Crack Propagation in Neutron-Irradiated Ferritic Pressure Vessel Steels, Nucl. Safl ,18, No. 6, 791–801 (1977).Google Scholar
  46. 42.
    G. D. Whitman, Heavy Section Steel Technology Program Quarterly Progress Report for July-September 1978, ORNL-NUREG-TM-275 (January 1979).Google Scholar
  47. 43.
    K. E. Stahlkopf, R. E. Smith, and T. U. Marston, Nuclear Pressure Boundary Materials Problems and Proposed Solutions, Nucl. Eng. Des. ,46, 65–79 (1978).CrossRefGoogle Scholar
  48. P. P. Holz and S. W. Wismer, Half-Bead (Temper) Repair Welding for HSST Vessels, ORNL/NUREG/TM-177, Oak Ridge National Laboratory, Tennessee.Google Scholar
  49. Technical Report: Investigation and Evaluation of Stress-Corrosion Cracking in Piping of Light Water Reactor Plants, U.S. Nuclear Regulatory Commission NUREG-0531 (January 1979).Google Scholar
  50. Seminar on Countermeasures for BWR Pipe Cracking, January 22-24, 1980, Palo Alto, California; EPRI WS-79-174, Workshop Report (May 1980).Google Scholar
  51. Alternate Alloy for BWR Pipe Applications, Quarterly Rep. NEDC-23750-2, EPRI Contract RP168.Google Scholar
  52. 47.
    M. Fox, An Overview of Intergranular Stress Corrosion Cracking in BWRs, paper presented at Seminar on Countermeasures for BWR Pipe Cracking, January 22–24, 1980, Palo Alto, California.Google Scholar
  53. 48.
    R. L. Cowan and C. S. Tedmon, Jr., Intergranular Corrosion of Iron-Nickel-Chromium Alloys, Adv. Corros. Sci. Technol. ,3, 293–400 (1973).Google Scholar
  54. 49.
    C. S. Pande, M. Suenaga, B. Vyas, and H. S. Isaacs, Direct Evidence of Chromium Depletion near the Grain Boundaries in Stainless Steels, Scr. Metall. 11,681–684 (1977).CrossRefGoogle Scholar
  55. 50.
    H. E. Chung and J. B. Lumsden, Grain Boundary Characterization, Ohio State University Report, FCC-7704 (1977).Google Scholar
  56. 51.
    A. J. Giannuzzi, Studies on AISI Type 304 Stainless Steel Piping Weldments for Use in BWR Application, Electric Power Research Institute Final Report NP 944 (December 1978).Google Scholar
  57. 52.
    M. J. Povich and P. Rao, Low-Temperature Sensitization of Welded Type 304 Stainless Steel, Corrosion ,34, 269–275 (1978).Google Scholar
  58. 53.
    M. J. Povich, Low-Temperature Sensitization of Type 304 Stainless Steel, Corrosion ,34, 60–65 (1978).Google Scholar
  59. 54.
    W. L. Clarke and V. M. Romero, Detection of Sensitization in Stainless Steel: II. EPR Method for Nondestructive Field Tests, General Electric Company Report No. GEAP 12697 (February 1978).Google Scholar
  60. 55.
    W. J. Shack, W. A. Ellingston, and L. E. Paris, The Measurement of Residual Stresses in Type 304 Stainless Piping Butt Weldments, Argonne National Laboratory Report (September 1978).Google Scholar
  61. 56.
    W. L. Clarke and G. M. Gordon, Investigation of Stress Corrosion Cracking Susceptibility of Fe-Ni-Cr Alloys in Reactor Water Environments, Corrosion ,29, 1–12 (1973).Google Scholar
  62. 57.
    E. L. Burley, Technical Highlights, Alternate Water Chemistry Program, General Electric Co., San Jose, California, COO-2985-14 (September 1978).Google Scholar
  63. 58.
    W. L. Pearl, W. R. Kassen, and S. G. Sawochka, Oxygen Monitoring and Control in BWR Plants, Nucl. Technol. ,37(2), 94–98 (1978).Google Scholar
  64. 59.
    F. P. Ford and M. J. Povich, The Effect of Oxygen/Temperature Combinations on the Stress-Corrosion Susceptibility of Sensitized 304 Stainless Steel in High-Purity Water, Paper No. 94, in: Corrosion 79 ,Atlanta, Georgia, March 1979.Google Scholar
  65. 60.
    R. E. Hanneman, Prakash Rao, and J. C. Danko, Intergranular Stress Corrosion Cracking in 304SS BWR Pipe Welds in High-Temperature Aqueous Environments, General Electric Company Report No. 78CRD-92 (October 1978).Google Scholar
  66. 61.
    D. O. Harris, The Influence of Crack Growth Kinetics and Inspection on the Integrity of Sensitized BWR Piping Welds, EPRINP-1163, Project 1325-2, final report (September 1979).Google Scholar
  67. Nuclear Systems Materials Handbook ,Vols. 1 and 2, Handford Engineering Development Laboratory (HEDL), TID-2666 [distribution limited to U.S. DOE approved recipients].Google Scholar
  68. Code Case 1592-7, ASME Boiler and Pressure Vessel Code.Google Scholar
  69. 64.
    B. van der Schaaf, M. I. deVres, and J. D. Elen, Effect of Irradiation on Creep-Fatigue Interaction of DIN 1.4048 Stainless Steel Plate and Welds at 823°K, in: International Atomic Energy Agency Specialists Meeting on Properties of Primary Circuit Structural Materials Including Environmental Effects, Bergisch Gladbach, West Germany, October 17–21, 1977.Google Scholar
  70. 65.
    L. F. Coffin, Jr., S. S. Manson, A. E. Carden, L. K. Severud, and W. L. Greenstreet, Time-Dependent Fatigue of Structural Alloys: A General Assessment (1975), Oak Ridge National Lab. Rep. ORNL-5073, (January 1977).Google Scholar
  71. 66.
    J. D. Heald and E. Kiss, Low-Cycle Fatigue of Nuclear Pipe Components, J. Pressure Vessel Technol. ,171–176 (August 1974).Google Scholar
  72. 67.
    D. R. Diercks and D. T. Raske, Elevated-Temperature Strain-Controlled Fatigue Data on Type 304 Stainless Steel: A Compilation, Multiple, Linear Regression Model, and Statistical Analysis, Argonne National Laboratory, ANL-76–95 (December 1976).Google Scholar
  73. 68.
    K. D. Sheffler and G. S. Doble, Thermal Fatigue Behavior of T-111 and Astar 811-C in Ultrahigh Vacuum, in: Fatigue at Elevated Temperatures ,ASTM STP-520, American Society for Testing and Materials (1973), pp. 491–499.CrossRefGoogle Scholar
  74. 69.
    S. Majumdar and P. S. Maiya, A Mechanistic Model for Time-Dependent Fatigue, J. Eng. Mater. Technol. ,102, 159–167 (1980).CrossRefGoogle Scholar
  75. 70.
    C. Y. Cheng and D. R. Dierks, Effects of Hold Time on Low-Cycle Fatigue Behavior of AISI Type 304 Stainless Steel at 593°C, Metall. Trans. ,4, 615–617 (1973).CrossRefGoogle Scholar
  76. 71.
    G. J. Lloyd, Mechanical Properties of Austenitic Stainless Steels in Sodium, At. Energ. Rev. ,16, 155–208 (1978).Google Scholar
  77. 72.
    G. J. Zeman and D. L. Smith, Low-Cycle Fatigue Behavior of Types 304 and 316 Stainless Steel Tested in Sodium at 550°C, Nucl. Technol. ,42, 82–89 (1979).Google Scholar
  78. 73.
    P. S. Maiya and S. Majumdar, Elevated-Temperature Low-Cycle Fatigue Behavior of Different Heats of Type 304 Stainless Steel, Metall. Trans. ,8A, 1651–1660 (1977).Google Scholar
  79. 74.
    D. J. Michel and G. E. Korth, Effects of Irradiation on Fatigue and Crack Propagation in Austenitic Stainless Steels, in: Proceedings of the International Conference on Ra diation Effects in Breeder Reactor Structural Materials ,Scottsdale, Arizona, June 19-23, 1977, Met. Soc. AIME, pp. 117–137.Google Scholar
  80. 75.
    G. E. Korth and M. D. Harper, Fatigue and Creep-Fatigue of Irradiated and Unirradiated Type 304 and 316 Stainless Steel, in: Semi-annual Progress Report for the Irradiation Effects of Reactor Structural Materials Program for the Period Ending February 1975 ,T. T. Claudson, ed., HEDL-TME 75–23, pp. ANC-1 to ANC-9 (March 1975).Google Scholar
  81. 76.
    C. R. Brinkman, G. E. Korth, and J. M. Beeston, Fatigue and Creep-Fatigue Behavior of Irradiated Stainless Steels-Available Data, Simple Correlations, and Recommendations for Additional Work in Support of LMFBR Design, ANCR-1096 (February 1973).Google Scholar
  82. 77.
    G. D. Korth and M. D. Harper, Fatigue and Creep Fatigue Behavior of Irradiated and Unirradiated Type 308 Stainless Steel Weld Metal at Elevated Temperatures, ASTMSTP-570 (1975), pp. 172–190.Google Scholar
  83. 78.
    C. R. Brinkman, G. E. Korth, and J. M. Beeston, Influence of Irradiation on Creep Fatigue Behavior of Several Austenitic Stainless Steels and Incoloy 800 at 700°C, ASTM STP-529, pp. 473–492 (1973).Google Scholar
  84. 79.
    C. R. Brinkman, G. E. Korth, and R. R. Hobbins, Estimates of Creep-Fatigue Interaction in Irradiated and Unirradiated Stainless Steels, Nucl. Technol. ,16, 297–307 (1972).Google Scholar
  85. 80.
    L. A. James, Fatigue Crack Propagation in Austenitic Stainless Steels, At. Energ. Rev. ,14, 37–86 (1976).Google Scholar
  86. 81.
    M. Reich and E. P. Esztergar, Compilations of References, Data Sources, and Analysis Methods for LMFBR Primary Piping System Components, BNL-NUREG-50650 (March 1977).Google Scholar
  87. 82.
    A. E. Carden, Parametric Analysis of Fatigue Crack Growth, in: International Con ference on Creep and Fatigue in Elevated Temperature Applications ,Philadelphia (1973), Paper C324/73.CrossRefGoogle Scholar
  88. 83.
    L. A. James, Effects of Irradiation and Thermal Aging upon Fatigue-Crack Growth Behavior of Reactor Pressure Boundary Materials, paper presented at IAEA Technical Meeting, November 20–21, 1978, Innsbruck, Austria.Google Scholar
  89. 84.
    L. A. James, Some Questions Regarding the Interaction of Creep and Fatigue, J. Eng. Mater. Technol. ,98, 235–243 (1976).CrossRefGoogle Scholar
  90. 85.
    L. A. James, The Effect of Frequency upon Fatigue Crack Growth of Type 304 Stainless Steel at 1000F, in: Stress Analysis and Growth of Cracks ,Proceedings of the 1971 National Symposium on Fracture Mechanics, Part I, ASTM STP-513 (1972), 218–229.CrossRefGoogle Scholar
  91. 86.
    L. A. James, Hold-Time Effects on the Elevated-Temperature Fatigue-Crack Propagation of Type 304 Stainless Steel, Nucl. Technol. ,16, 521–530 (1972).Google Scholar
  92. 87.
    L. A. James, Frequency Effects in the Elevated-Temperature Crack Growth Behavior of Austenitic Stainless Steel-A Design Approach, J. Pressure Vessel Technol. ,101, 171–176 (1979).CrossRefGoogle Scholar
  93. 88.
    L. A. James, The Effect of Stress Ratio on the Elevated-Temperature Fatigue Crack Propagation of Type 304 Stainless Steel, Nucl. Technol. ,14, 163–170 (1972).Google Scholar
  94. 89.
    D. J. Michel and H. H. Smith, Effect of Hold Time and Thermal Aging on Elevated Temperature Fatigue Crack Propagation in Austenitic Stainless Steels, Memorandum Report 3627, Naval Research Laboratory (1977).Google Scholar
  95. 90.
    B. Houssin and G. Slama, Metallurgical Practice and Assessment of Toughness for Components in SA 508 C13, in: European Nuclear Conference, Hamburg, Germany, May 6-11, 1979; abstract in: Trans. Am. Nucl. Soc. ,31, 579–580 (1979).Google Scholar
  96. 91.
    J. H. Gross, Pressure Vessel Steels: Promise and Problem, J. Pressure Vessel Technol. ,9–14 (February 1974).Google Scholar
  97. 92.
    J. Danko, BWR Piping Remedies, Electr. Power Res. Inst. J. ,47–48 (June 1979).Google Scholar
  98. Residual Stress Improvement by Means of Induction Heating, Ishikawajima-Harima Eng. Rev. ,18, No. 1 (1978).Google Scholar
  99. 94.
    E. F. Rybicki, P. M. McGuire, and R. B. Stonesifer, The Improvement of Residual Stresses in Girth-Butt Welded Pipes through an Internal Heat Sink, presentation in Division F10, No. 8, 5th International SMIRT Conference (August 1979).Google Scholar
  100. 95.
    BWR Environmental Cracking Margins for Carbon Steel Piping: First Semi-annual Progress Report, July 1978-December 1978, EPRI Contract RP1248-1, General Electric Report No. NEDC-24625 (January 1979).Google Scholar
  101. 96.
    J. E. Alexander, Alternative Alloy for BWR Pipe Applications: Third Semi-annual Progress Report, Oct. 1978-March 1979, General Electric Report NEDC-23750-5 on EPRI Contract RP-968 (May 1979).Google Scholar
  102. 97.
    J. J. Mueller and Mohamed Behravesh, Improvement of Nuclear Castings by Application of Hot Isostatic Pressing (HIP), Electric Power Research Institute, final report on Project 1249, EPRI NP-1213 (November 1979).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. T. Adrian Roberts
    • 1
  1. 1.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations