Analysis by Means of Spectral Reflectance of Substances Resolved on Thin Plates

  • Michael M. Frodyma
  • T. Van Lieu


Because of the many advantages it affords, thin-layer chromatography has found widespread application in the resolution of mixtures and the identification of their components. Not only are the procedures employed simple and easily carried out and the equipment required inexpensive, but the separations achieved are usually sharper than those obtained with the same or a similar solvent-system used in conjunction with paper. Particularly noteworthy is the speed of chromatographic development, with only one or two hours often sufficing for the resolution of a mixture on chromatoplates.


Thin Plate Malachite Green Spectral Reflectance Plastic Plate Reading Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Winslow and H. A. Liebhafsky, Anal. Chem., 21:1338 (1949).CrossRefGoogle Scholar
  2. 2.
    K. Yamaguchi, S. Fujii, T. Tabata and S. Kato, J. Pharm. Soc. Japan, 74:1322 (1954).Google Scholar
  3. 3.
    K. Yamaguchi, S. Fukushima and M. Ito, J. Pharm. Soc. Japan, 75:556 (1955).Google Scholar
  4. 4.
    R. B. Fischer and F. Vratny, Anal. Chim. Acta, 13:588 (1955).CrossRefGoogle Scholar
  5. 5.
    F. Pruckner, M. von der Schulenburg, and G. Schwuttke, Naturwiss., 38:45 (1951).CrossRefGoogle Scholar
  6. 6.
    G. Schwuttke, Z. Angew. Phys., 5:303 (1953).Google Scholar
  7. 7.
    C. A. Lermond and L. B. Rogers, Anal. Chem., 27:340 (1955).CrossRefGoogle Scholar
  8. 8.
    P. Kubelka and F. Munk, Z. Techn. Physik, 12:593 (1931).Google Scholar
  9. 9.
    P. Kubelka, J. Opt. Soc. Am., 38:448, 1067 (1948).CrossRefGoogle Scholar
  10. 10.
    G. Kortüm and H. Schöttler, Z. Electro chem., 57: 353 (1953).Google Scholar
  11. 11.
    G. Kortüm, Angew. Chem. Intern. Ed. Eng., 2:333 (1963).CrossRefGoogle Scholar
  12. 12.
    R. W. Frei and M. M. Frodyma, Anal. Chim. Acta., 32:501 (1965).CrossRefGoogle Scholar
  13. 13.
    V. T. Lieu and M. M. Frodyma, Talanta, 13:1319 (1966).CrossRefGoogle Scholar
  14. 14.
    A. Ringbom, Z. Anal. Chem., 715:332 (1939).Google Scholar
  15. 15.
    G. H. Ayres, Anal. Chem., 21:652 (1949).CrossRefGoogle Scholar
  16. 16.
    M. M. Frodyma, V. T. Lieu and R. W. Frei, J. Chromatog,, 18:520 (1965).CrossRefGoogle Scholar
  17. 17.
    M. M. Frodyma and V. T. Lieu, Anal. Chem., 39:814 (1967).CrossRefGoogle Scholar
  18. 18.
    M. M. Frodyma, R. W. Frei and D. J. Williams, J. Chromatog., 13:61 (1964).CrossRefGoogle Scholar
  19. 19.
    V. T. Lieu, R. W. Frei, M. M. Frodyma and I. T. Fukui, Anal. Chim. Acta., 33:639 (1965).CrossRefGoogle Scholar
  20. 20.
    M. M. Frodyma and R. W. Frei, unpublished data.Google Scholar
  21. 21.
    H. B. Bull, J. W. Hahn and V. R. Baptist, J. Am. Chem. Soc., 71:550 (1949).CrossRefGoogle Scholar
  22. 22.
    M. M. Frodyma and R. W. Frei, J. Chromatog., 17:131 (1965).CrossRefGoogle Scholar
  23. 23.
    R. W. Frei, I. T. Fukui, V. T. Lieu and M. M. Frodyma, Chimia, 20:23 (1966).Google Scholar
  24. 24.
    F. J. Thaller, M. S. Thesis, Univ. of Hawaii (1965).Google Scholar
  25. 25.
    V. T. Lieu, M. M. Frodyma and L. S. Higashi, Anal. Biochem., 19:454 (1967).CrossRefGoogle Scholar
  26. 26.
    R. W. Frei and D. E. Ryan, Anal. Chim. Acta, 37:187 (1967).CrossRefGoogle Scholar
  27. 27.
    D. F. Zaye, R. W. Frei and M. M. Frodyma, Anal. Chim. Acta, 39:13 (1967).CrossRefGoogle Scholar
  28. 28.
    M. M. Frodyma, D. F. Zaye and V. T. Lieu, Anal. Chim. Acta, (in Press).Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Michael M. Frodyma
    • 1
  • T. Van Lieu
    • 2
  1. 1.National Science FoundationUSA
  2. 2.Dept. of ChemistryCalifornia State CollegeLong BeachUSA

Personalised recommendations