Advertisement

High Temperature Reflectance Spectroscopy and Dynamic Reflectance Spectroscopy

  • Wesley W. Wendlandt

Abstract

The measurement of the radiation reflected from a mat surface constitutes the area of spectroscopy known as diffuse reflectance spectroscopy. The reflected radiation may be in the ultraviolet, visible, or infrared regions of the electromagnetic spectrum, although the first two listed are by far the more widely used at present time. The radiation reflected from a mat surface, RT, consists in general of two components: a regular reflection component (sometimes known as surface- or mirror-reflection), R, and a diffuse reflection component, R (1,2). The former component is due to the reflection at the surface of single crystallites while the latter arises from the radiation penetrating into the interior of the solid and re-emerging to the surface after being scattered numerous times.

Keywords

Reflectance Spectrum Reflectance Spectroscopy Thermal Transition Reflectance Curve Peak Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience, New York, 1966, Chap. 3 and 4. Google Scholar
  2. 2.
    G. Kortum, Trans, Faraday Soc., 58, l624 (1962). CrossRefGoogle Scholar
  3. 3.
    P. Kubelka and F. Munk, Z. Techn. Physik, 12, 593 (1931). Google Scholar
  4. 4.
    Reference (l), p. 275–279. Google Scholar
  5. 5.
    Reference (l), Chap. 8. Google Scholar
  6. 6.
    W. W. Wendlandt, Thermal Methods of Analysis, Interscience, New York, 1964, Chap. 10. Google Scholar
  7. 7.
    Reference (l), Chap. 7. Google Scholar
  8. 8.
    W. W. Wendlandt, The Encyclopedia of Chemistry, G. L. Clark and G.G. Hawley, eds., Reinhold, New York, Second Ed., 1966, p. 357. Google Scholar
  9. 9.
    W. W. Wendlandt, Science, 140, 1085 (1963). CrossRefGoogle Scholar
  10. 10.
    Anon, Chem. and Eng. News, April 15, 1963, p. 62. Google Scholar
  11. 11.
    R. W. Asmussen and P. Andersen, Acta Chem. Scand., 12, 939 (1958). CrossRefGoogle Scholar
  12. 12.
    W. E. Hatfield, T. S. Piper and U. Klabunde, Inorg. Chem., 2, 629 (1963). CrossRefGoogle Scholar
  13. 13.
    W. W. Wendlandt, P. H. Franke and J. P. Smith, Anal. Chem., 35, 105 (1963). CrossRefGoogle Scholar
  14. 14.
    W. W. Wendlandt and T. D, George, Chemist-Analyst, 53, 100 (1964). Google Scholar
  15. 15.
    R. W. Frei and M. M. Frodyma, Anal. Chim. Acta, 32, 501 (1965). CrossRefGoogle Scholar
  16. 16.
    W. W. Wendlandt, J. Chem. Educ., 40, 428 (1963). CrossRefGoogle Scholar
  17. 17.
    W. W. Wendlandt, J. Inorg. Nucl. Chem., 25, 833 (1963). CrossRefGoogle Scholar
  18. 18.
    W. W. Wendlandt and R. E. Cathers, Chemist-Analyst, 53, 110 (1964). Google Scholar
  19. 19.
    E. L. Simmons and W. W. Wendlandt, J. Inorg. Nucl. Chem., 28, 2187 (1966). CrossRefGoogle Scholar
  20. 20.
    W. W. Wendlandt, Chemist-Analyst, 53, 71 (1964). Google Scholar

Copyright information

© Plenum Press 1968

Authors and Affiliations

  • Wesley W. Wendlandt
    • 1
  1. 1.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations