Advertisement

White Rot Fungi in the Treatment of Hazardous Chemicals and Wastes

  • Richard T. Lamar
  • John A. Glaser
  • T. Kent Kirk

Abstract

Microbiological treatment of hazardous wastes has generally been associated with the use of bacteria. However, during the past decade a significant body of evidence has accumulated that demonstrates that fungi, in particular lignin-degrading or white-rot fungi, have the ability to degrade a wide range of hazardous organic compounds and thus might also be useful for treatment of materials contaminated with these compounds.

Keywords

Color Removal Lignin Degradation Lignin Peroxidase Environmental Microbiology Phanerochaete Chrysosporium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arjmand, M., and Sandermann, H., Jr. 1986. Plant biochemistry of xenobiotics. Mineralization of chloroaniline/lignin metabolites from wheat by the white-rot fungus, Phanerochaete chrysosporium. Zeitschrift fuer Naturforschung 41c: 206–214.Google Scholar
  2. Arjmand, M., and Sandermann, H., Jr. 1985. Mineralization of chloroaniline/lignin conjugates and of free chloroanilines by the white rot fungus Phanerochaete chrysosporium. Journal of Agriculture and Food Chemistry 33: 1055–1060.CrossRefGoogle Scholar
  3. Bar-Lev, S. S., and Kirk, T. K. 1981. Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications 99: 373–378.CrossRefGoogle Scholar
  4. Bartha, R. 1980. Pesticide residues in humus. ASM News 46: 356–360.Google Scholar
  5. Bartha, R., You, I.-S., and Saxena, A., 1983. Humus-bound residues of phenylamide herbicides: their nature, persistence and monitoring. Pp. 345–350 in J. Miyamoto (ed.), IUPAC Pesticide chemistry. Pergamon Press, Oxford.Google Scholar
  6. Belt, P. B., Joyce, T. W., and Chang, H-M. 1981. Environmental Aspects of Some Alternative Pulp Bleaching Techniques. Report No. 15. Water Resources Research Institute, University of North Carolina, Raleigh, N.C.Google Scholar
  7. Bennett, D. J., Dence, C. W., Jung, F.-L., Luner, P., and Ota, M. 1971. The mechanism of color removal in the treatment of spent bleaching liquors with lime. Tappi 54: 2019–2026.Google Scholar
  8. Bennett, D. J., Dence, C. W., Jung, F.-L., Luner, P., and Ota, M., R. F. Christman and E. T. Gjessing (eds.), Aquatic and Terrestrial Humic Materials. Ann Arbor Science Publishers, Ann Arbor, MI. 1971.Google Scholar
  9. Bumpus, J. A. 1989. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology 55: 154–158.Google Scholar
  10. Bumpus, J. A., and Brock, B. J. 1988. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology 54: 1143–1150.Google Scholar
  11. Bumpus, J. A., Tien, M., Wright, D., and Aust, S. D. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436.PubMedCrossRefGoogle Scholar
  12. Bumpus, J. A., and Aust, S. A. 1987. Biodegradation of DDT [1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology 53: 2001–2007.Google Scholar
  13. Buswell, J., and Odier, E. 1987. Lignin biodegradation. CRC Critical Reviews in Biotechnology 6: 1–60.CrossRefGoogle Scholar
  14. Campbell, A. G., Jr. 1983. A bench-scale evaluation of the MyCoR process for decolorization of bleach plant effluent using the white-rot fungus, Phanerochaete chrysosporium, Ph.D. Dissertation, North Carolina State University, Raleigh.Google Scholar
  15. Campbell, A. G., Gerrard, E. D., Joyce, T. W., Chang, H.-M., and Kirk, T. K. 1982. The MyCoR Process for color removal from bleach plant effluent: bench scale studies: Pp. 209–214 in Proceedings of the Technical Association of the Pulp and Paper Industry Research and Development Conference. Asheville, NC, August 29—September 1. TAPPI Press.Google Scholar
  16. Chang, H.-M., Joyce, T. W., and Kirk, T. K. 1987. Process of treating effluent from pulp or papermaking operations. U.S. Patent No. 4,655,926, April 7, 1987.Google Scholar
  17. Cripps, C., Bumpus, J. A., and Aust, S. D. 1990. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Applied and Environmental Microbiology 56: 1114–1118.Google Scholar
  18. Cowling, E. B., and Merrill, W. 1966. Nitrogen in wood and its role in wood deterioration. Canadian Journal of Botany 44: 1539–1554.CrossRefGoogle Scholar
  19. Dec, J., and Bollag, J.-M. 1988. Microbial release and degradation of catechol and chlorophenols bound to synthetic humic acid. Soil Science Society of America Journal 52: 1366–1371.CrossRefGoogle Scholar
  20. Douglas, G. R., Nestman, E. R., McKague, A. B., Kamra, O. P., Lee, E. G.-H., Ellenton, J. A., Bell, R., Kowbel, D., Liu, V., and Pooley, J. 1983. Mutagenicity of pulp and paper effluent: a comprehensive study of complex mixtures. Pp. 431–460, in M. Waters, S. Sandu, L. Claxton, J. Lewtas, S. Netnow, and N. Chernoff (eds.), Short-Term Bioassays in the Analysis of Complex Environmental Mixtures, Vol. 3. Plenum Press, New York.Google Scholar
  21. Eaton, D. C., Chang, H.-M., and Kirk, T. K. 1980. Fungal decolorization of bleach plant effluents. Tappi 63: 103–106.Google Scholar
  22. Eaton, D. C., Chang, H.-M., Joyce, T. W., Jeffries, T. W., and Kirk, T. K. 1982. Method obtains fungal reduction of the color of extraction-stage kraft bleach effluents. Tappi 65: 89–92.Google Scholar
  23. Eaton, D. C. 1985. Mineralization of polychlorinated biphenyls by Phanerochaete chrysosporium: a ligninolytic fungus. Enzyme and Microbial Technology 7: 194–196.Google Scholar
  24. Eriksson, K.-E., and Kirk, T. K. 1985. Biopulping and biobleaching of kraft bleaching effluents with white-rot fungi. Pp. 271–294 in C. Cooney and A. E. Humphreys (eds.), The Principles of Biotechnology: Engineering Considerations. In M. Moo-Young (ed.), Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine. Pergamon Press, New York.Google Scholar
  25. Faison, B. D., and Kirk, T. K. 1985. Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Applied and Environmental Microbiology 49: 299–304.Google Scholar
  26. Fernando, T., Bumpus, J. A., and Aust, S. D. 1990. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Applied and Environmental Microbiology 56: 1666–1671.Google Scholar
  27. Fukuzumi, T., Nishida, A., Aoshima, K., and Minami, K. 1977. Decolourization of kraft waste liquor with white rot fungi. I. Screening of the fungi and culturing condition for decolourization of kraft waste liquor. Mokuzai Gakkaishi 23: 290–298.Google Scholar
  28. George, E. J., and Neufeld, R. D. 1989. Degradation of fluorene in soil by fungus Phanerochaete chrysosporium. Biotechnology and Bioengineering 33: 1306–1310.CrossRefGoogle Scholar
  29. George, E. J., Noceti, R. P., and Dahlberg, M. D. 1986. An evaluation of the decolorization of pretreated coal gasification wastewater by the MYCOR process. U.S. Department of Energy Topical Report DOE/PETC/TR-86/8. 38 pp.Google Scholar
  30. Gilbertson, R. L. 1980. Wood-rotting fungi of North America. Mycologia 72: 1–49.CrossRefGoogle Scholar
  31. Glenn, J. K., Morgan, M. A., Mayfield, M. B., Kuwahara, M., and Gold, M. H. 1983. An extracellular H202-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications 114: 1077–1083.CrossRefGoogle Scholar
  32. Haemmerli, S. D., Leisola, M. S. A., Sanglard, D., and Fiechter, A. 1986. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Journal of Biological Chemistry 261: 6900–6903.Google Scholar
  33. Haider, K. M., and Martin, J. P. 1989. Mineralization of 14C-labelled humic acids and of humic-acid-bound 14C-xenobiotics by Phanerochaete chrysosporium. Soil Biology and Biochemistry 20: 425–429.CrossRefGoogle Scholar
  34. Hammel, K. E., and Tardone, P. J. 1988. The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidase. Biochemistry 27: 6563–6568.CrossRefGoogle Scholar
  35. Hammel, K. E., Tien, M., Kalyanaraman, B., and Kirk, T. K. 1985. Mechanism of oxidative Cα-Cβ cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase: stoichiometry and involvement of free radicals. Journal of Biological Chemistry 260: 8348–8353.PubMedGoogle Scholar
  36. Hammel, K. E., Kalyanaraman, B., and Kirk, T. K. 1986a. Substrate free radicals are intermediates in ligninase catalysis. Proceedings of the National Academy of Sciences, U.S.A. 83: 3708–3712.CrossRefGoogle Scholar
  37. Hammel, K., Kalyanaraman, B., and Kirk, T. K. 1986b. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. Journal of Biological Chemistry 261: 16948–16952.PubMedGoogle Scholar
  38. Hardell, H.-L., and deSousa, F. 1977. Characterization of spent bleaching liquors. I. Spent liquors from the chlorine and alkali extraction stages in the prebleaching of kraft pulp. Svensk Papperstidning 80: 110–120.Google Scholar
  39. Hering, T. F. 1967. Fungal decomposition of oak leaf litter. Transactions of the British Mycological Society. 50: 267–273.CrossRefGoogle Scholar
  40. Hering, T. F. 1982. Decomposing activity of basidiomycetes in forest litter. Pp. 213–239 in J. C. Frankland, J. N. Hedger, and M. J. Swift (eds.), Decomposer Basidiomycetes: Their Biology and Ecology. Cambridge University Press, Cambridge, England.Google Scholar
  41. Huttermann, A., Trojanowski, J., and Loske, D. 1989. Process for the decomposition of complex aromatic substances in contaminated soils/refuse matter with micro-organisms. German Patent No. DE3, 731, 816.Google Scholar
  42. Huynh, V.-B., Chang, H.-M., Joyce, T. W., and Kirk, T. K. 1985. Dechlorination of chloro-organics by a white-rot fungus. Tappi 68: 98–102.Google Scholar
  43. Huynh, V.-B., and Crawford, R. L. 1985. Novel extracellular enzymes (ligninases) of Phanerochaete chrysosporium. FEMS Microbiology Letters 28: 119–123.CrossRefGoogle Scholar
  44. Jeffries, T. W., Choi, S., and Kirk, T. K. 1981. Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Applied and Environmental Microbiology 42: 290–296.Google Scholar
  45. Kersten, P. J. 1990. Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences USA 87: 2936–2940.CrossRefGoogle Scholar
  46. Kersten, P. J., Tien, M., Kalyanaraman, B., and Kirk, T. K. 1985. The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. Journal of Biological Chemistry 260: 2609–2612.PubMedGoogle Scholar
  47. Keyser, P., Kirk, T. K., and Zeikus, J. G. 1978. Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in absence of lignin in response to nitrogen starvation. Journal of Bacteriology 135: 790–797.PubMedGoogle Scholar
  48. Kirk, T. K. 1983. Degradation and conversion of lignocelluloses. Pp. 266–295 in Smith, J. E., Berry, D. R., Kristiansen, B. The Filamentous Fungi, Vol.4, Fungal Technology. Edward Arnold, London.Google Scholar
  49. Kirk, T. K. 1987. Lignin-degrading enzymes. Philosophical Transactions of the Royal Society of London A321: 461–474.Google Scholar
  50. Kirk, T. K., Connors, W. J., and Zeikus, J. G. 1976. Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Applied and Environmental Microbiology 32: 192–194.PubMedGoogle Scholar
  51. Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., and Zeikus, J. G. 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology 177: 277–285.CrossRefGoogle Scholar
  52. Kirk, T. K., and Shimada, M. 1985. Lignin biodegradation: the microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. Pp. 579–605 in T. Higuchi, (ed.), Biosynthesis and Biodegradation of Wood Components. Academic Press, San Diego.Google Scholar
  53. Kirk, T. K., Tien, M., Kersten, P. J., Mozuch, M. D., and Kalyanaraman, B. 1986. Ligninase of Phanerochaete chrysosporium mechanism of its degradation of the non-phenolic arylglycerol B-aryl ether substructure of lignin. Biochemical Journal 236: 279287.Google Scholar
  54. Kohler, A., Jager, A., Willerhausen, H. and Graf, H. 1988. Extracellular ligninase of Phanerochaete chrysosporium Burdsall has no role in the degradation of DDT. Applied Microbiology and Biotechnology 29: 618–620.CrossRefGoogle Scholar
  55. Kringstad, K. P., and Lindstrom, K. 1982. Present knowledge on the organic chemical composition of spent bleach liquors with emphasis on compounds with toxic effects. In Proceedings of the Technical Association of the Pulp and Paper Industry Research and Development Conference. Asheville, NC, August 29—September 1. TAPPI Press.Google Scholar
  56. Lamar, R. T., and D. M. Dietrich. 1990. In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Applied and Environmental Microbiology 56: 3093–3100.PubMedGoogle Scholar
  57. Lamar, R. T., Larsen, M. J., and Kirk, T. K. 1990. Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Applied and Environmental Microbiology 56: 3519–3526.PubMedGoogle Scholar
  58. Lamar, R. T., Larsen, M. J., Kirk, T. K., and Glaser, J. A. (1987) Growth of the white-rot fungus Phanerochaete chrysosporium in soil. Pp. 419–424 in N. P. Barkley and J. F. Martin (eds.), Land Disposal, Remedial Action, Incineration and Treatment of Hazardous Waste: Proceedings of the 13th Annual Research Symposium. Hazardous Waste and Engineering Research Laboratory, Office of Research and Development, U.S. EPA/600/9–87/015. U.S. EPA, Cincinnati, OH.Google Scholar
  59. Lamar, R. T., Glaser, J. A., and Kirk, T. K. 1990. Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiiomycetePhanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biology and Biochemistry 22: 433–440.CrossRefGoogle Scholar
  60. Leach, L. M., and Thakore, A. N. 1975. Isolation and identification of constituents toxic to juvenile rainbow trout (Salmo gairdneri) in caustic extraction effluents from kraft pulpmill bleach plants. Journal of Fish Research Board Canada. 32: 1249–1257.CrossRefGoogle Scholar
  61. Lin, J.-E., Wang, H. Y., and Hickley, R. F. 1990. Degradation kinetics of pentachlorophenol by Phanerochaete chrysosporium. Biotechnology and Bioengineering 35: 1125–1134.CrossRefGoogle Scholar
  62. Lindstrom, K., and Osterberg, F. 1984. Characterization of the high molecular mass chlorinated matter in spent bleach liquors (SBL) Part 1. Alkaline SBL. Holzforschung 38: 201–212.CrossRefGoogle Scholar
  63. Lundquist, K., Kirk, T. K., and Connors, W. J. 1977. Fungal degradation of kraft lignin and lignin sulfonates prepared from synthetic 14C-lignins. Archives of Microbiology 112: 291–296.CrossRefGoogle Scholar
  64. Messner, K., Ertler, G., Jaklin-Farcher, S., Boskovsky, P., Regensberger, U., and Blaha, A. 1990. Treatment of bleach plant effluents by the MYCOPOR system. Pp. 245–251 in T. K. Kirk and H.-M. Chang (eds.), Biotechnology in Pulp and Paper Manufacture: Applied and Fundamental Investigations. Butterworth-Heinemann, Boston.Google Scholar
  65. Messner, K., Jaklin-Farcher, S., Ertler, G., and Blaha, A. 1988. Decolorization and organochlorine compound removal from pulp bleaching plant effluents by Phanerochaete chrysosporium immobilized on plastic foam. Forum Mikrobiologie 11: 492–497.Google Scholar
  66. Mileski, G. J., Bumpus, A., Jurek, M. A., and Aust, S. D. 1988. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology 54: 2885–2889.Google Scholar
  67. NCASI (National Council of the Paper Industry for Air and Stream Improvement). 1971. An investigation of improved procedures for measurement of mill effluent and receiving waste color. Technical Bulletin No. 253, December 1971.Google Scholar
  68. Ohmomo, S., Itoh, N., Watanabe, Y., Kaneko, Y., Tozawa, Y., and Ueda, K. 1985. Continuous decolorization of molasses waste water with mycelia of Coliolus versicolor Ps4a. Agriculture and Biological Chemistry 49: 2551–2555.CrossRefGoogle Scholar
  69. Pellinen, J., Yin, C.-F., Joyce, T. W., and Chang, H.-M. 1988. Treatment of chlorine bleaching effluent using a white-rot fungus. Journal of Biotechnology 8: 67–76.CrossRefGoogle Scholar
  70. Rayner, A. D. M., and Boddy, L. 1988. Fungal Decomposition of Wood: Its Biology and Ecology. John Wiley, New York.Google Scholar
  71. Reid, I. D., and Seifert, K. A. 1982. Effect of an atmosphere of oxygen on growth, respiration, and lignin degradation by white-rot fungi. Canadian Journal of Botany 60: 252–260.CrossRefGoogle Scholar
  72. Ryan, T. P., and Bumpus, J. A. 1989. Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology 31: 302–307.Google Scholar
  73. Sanglard D., Leisola M. S. A., and Fiechler, A. 1986. Role of extracellular ligninases in biodegradation of benzo(a)pyrene by Phanerochaete chrysosporium. Enzyme and Microbial Technology 8: 209–212.CrossRefGoogle Scholar
  74. Sundman, G., Kirk, T. K., and Chang, H.-M. 1981. Fungal decolorization of kraft bleach plant effluent: fate of the chromophoric material. Tappi 64: 145–148.Google Scholar
  75. Tien, M., and Kirk, T. K. 1983. Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221: 661–663.PubMedCrossRefGoogle Scholar
  76. Ulmer, D. C., Leisola, M. S. A., and Fiechter, A. 1984. Possible induction of the ligninolytic system of Phanerochaete chrysosporium. Journal of Biotechnology 1: 1324.Google Scholar
  77. Yin, C.-F., Joyce, T. W., and Chang, H.-M. 1989. Kinetics of bleach plant effluent decolorization by Phanerochaete chrysosporium. Journal of Bacteriology 10: 67–76.Google Scholar
  78. Yin, C.-F., Joyce, T. W., and Chang, H.-M. 1990. Dechlorination of conventional softwood bleaching effluent by sequential biological treatment. Pp. 231–244. in T. K. Kirk and H.-M. Chang (eds), Biotechnology in Pulp and Paper Manufacture: Applied and Fundamental Investigations. Butterworth-Heinemann, Boston.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • Richard T. Lamar
  • John A. Glaser
  • T. Kent Kirk

There are no affiliations available

Personalised recommendations