Use of Fungi in Pulping Wood: An Overview of Biopulping Research

  • T. Kent Kirk
  • Richard R. Burgess
  • John W. KoningJr.


Fresh wood chips destined and stored for pulp production are rapidly colonized by a variety of microorganisms, including many species of fungi. These organisms compete vigorously while easily assimilable foodstuffs last, and then their populations decrease. They are replaced by fungi that are able to degrade and gain nourishment from the cell wall structural polymers: cellulose, hemicelluloses, and lignin. Left unchecked, these last colonizers, mostly “white-rot fungi,” eventually decompose the wood to carbon dioxide and water. Some of them selectively degrade the lignin component, which is what chemical pulping processes accomplish. Biopulping is the concept of deliberately harnessing white-rot fungi for pulping.


Lignin Degradation Lignin Peroxidase Phanerochaete Chrysosporium Veratryl Alcohol Fungal Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akamatsu, I., Yoshihara, K., Kamishima, H., and Fujii, T. 1984. Influence of white-rot fungi on poplar chips and thermo-mechanical pulping of fungi-treated chips. Mokuzai Gakkaishi 30: 697–702.Google Scholar
  2. Ander, P., and Eriksson, K.-E. 1975. Mekanisk massa frän förrötad flis-en inledande undersökning. Svensk Papperstidning 18: 641–642.Google Scholar
  3. Bar-Lev, S. S. Kirk, T. K., and Chang, H.-m. 1982. Fungal treatment can reduce energy requirements for secondary refining of TMP. Tappi Journal 65: 111–113.Google Scholar
  4. Blanchette, R. A., Burnes, T. A., Leatham, G. F., and Effland, M. J. 1988. Selection of white-rot fungi for biopulping. Biomass 15: 93–101.CrossRefGoogle Scholar
  5. Burdsall, H. H., Jr., aid Eslyn, W. E. 1974. A new Phanerochaete with a chrysosporium imperfect state. Mycotaxon 1: 123–133.Google Scholar
  6. Eriksson, K.-E., Ander, P., Henningsson, B., Nilsson, T., and Goodell, B. 1976. Method for producing pulp. June 8, 1976, U.S., Patent No. 3, 962, 033.Google Scholar
  7. Eriksson, K.-E., and Kirk, T. K. 1985. Biopulping, biobleaching and treatment of kraft bleaching effluents with white-rot fungi. Pp. 271–294 in C. L. Cooney, and A. E. Humphrey (eds.), The Principles of Biotechnology: Engineering Considerations. In M. Moo-Young, (ed.), Comprehensive Biotechnology: The Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine. Pergamon Press,New York.Google Scholar
  8. Harpole, G. B., Leatham, G. F., and Myers, G. C. 1989. Economic assessment of biomechanical pulping. In Proceedings of the International mechanical pulping conference 1989—Mechanical pulp—Responding to the end product demands; 1989 June 6–8; Helsinki. 2: 398–408.Google Scholar
  9. Hesseltine, C. W. 1972. Solid state fermentations. Biotechnology and Bioengineering 14: 517–532.PubMedCrossRefGoogle Scholar
  10. Johnsrud, S. C., and Eriksson, K.-E. 1985. Cross-breeding of selected and mutated homokaryotic strains of Phanerochaete chrysosporium K-3: New cellulase deficient strains with increased ability to degrade lignin. Applied Microbiology and Biotechnology 21: 320–327.CrossRefGoogle Scholar
  11. Johnsrud, S. C., Fernandez, N., Lopez, P., Guitiérrez, I., Saez, A., and Eriksson, K.-E. 1987. Properties of fungal pretreated high yield bagasse pulps. Nordic Pulp & Paper Research Journal, Special Issue 2: 47–52.Google Scholar
  12. Kawase, K. 1962. Chemical components of wood decayed under natural conditions and their properties. Journal of Faculty of Agriculture, Hokkaido University 52: 186–245.Google Scholar
  13. Kersten, P. J. 1990. Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proceedings of the National Academy of Sciences USA 87: 2936–2940.Google Scholar
  14. Kirk, T. K. 1988. Lignin degradation by Phanerochaete chrysosporium. ISI Atlas of Science: Biochemistry 1: 71–76.Google Scholar
  15. Lawson, L. R., Jr. and Still, C. N. 1957. The biological decomposition of lignin—literature survey. Tappi Journal 40: 56A - 80A.Google Scholar
  16. Leatham, G. F., and Myers, G. C. 1990. A PFI mill can be used to predict biomechanical pulp strength properties. Tappi Journal 73: 192–197.Google Scholar
  17. Leatham, G. F., Myers, G. C., and Wegner, T. H. 1990. Biomechanical pulping of aspen chips: energy savings resulting from different fungal treatments. Tappi Journal 73: 197–200.Google Scholar
  18. Leatham, G. F., Myers, G. C., Wegner, T. H., and Blanchette, R. A. 1990. Biomechanical pulping of aspen chips: paper strength and optical properties resulting from different fungal treatments. Tappi Journal 73: 249–255.Google Scholar
  19. Leatham, G. F., Myers, G. C., Wegner, T. H., and Blanchette, R. A. 1990. Energy savings in biomechanical pulping. Pp. 17–26 in T. K. Kirk and H.-m. Chang (eds.), Biotechnology in Pulp and Paper Manufacture. Butterworth Publishers, Stoneham, MA.Google Scholar
  20. Myers, G. C., Leatham, G. F., Wegner, T. H., and Blanchette, R. A. 1988. Fungal pretreatment of aspen chips improves strength of refiner mechanical pulp. Tappi Journal 71: 105–108.Google Scholar
  21. Nishida, T., Kashino, Y., Mimura, A., and Takahara, Y. 1988. Lignin biodegradation by wood-rotting fungi. I. Screening of lignin-degrading fungi. Mokuzai Gakkaishi 34: 530–536.Google Scholar
  22. Otjen, L., Blanchette, R., Effland, M., and Leatham, G. 1987. Assessment of 30 white rot basidiomycetes for selective lignin degradation. Holzforschung 41: 343–349.CrossRefGoogle Scholar
  23. Reis, C. J. and Libby, C. E. 1960. An experimental study of the effect of Fomes pini (Thore) Lloyd on the pulping qualities of pond pine Pinus serotina (Michx) cooked by the sulfate process. Tappi Journal 43: 489–499.Google Scholar
  24. Ruel, K., Barnoud, F., and Eriksson, K.-E. 1981. Micromorphological and ultrastructural aspects of spruce wood degradation by wild-type Sporotrichum pulverulentum and its cellulase-less mutant Cel 44. Holzforschung 35: 157–171.CrossRefGoogle Scholar
  25. Ruel, K., Barnoud, F., and Eriksson, K.-E. 1984. Ultrastructural aspects of wood degradation by Sporotrichum pulverulentum—Observations on spruce wood impregnated with glucose. Holzforschung 38: 61–68.CrossRefGoogle Scholar
  26. Sachs, I. B., Leatham, G. F., and Myers, G. C. 1989. Biomechanical pulping of aspen chips by Phanerochaete chrysosporium: Fungal growth pattern and effects on wood cell walls. Wood and Fiber Science 21: 331–342.Google Scholar
  27. Samuelsson, L, Mjöberg, P. J., Harder, N., Vallander, L., and Eriksson, K.-E. 1980. Influence of fungal treatment of the strength versus energy relationship in mechanical pulping. Svensk Papperstidning 8: 221–225.Google Scholar
  28. Schalch, H., Gaskell, J., Smith, T. L., and Cullen, D. 1989. Molecular cloning and sequences of lignin peroxidase genes of Phanerochaete chrysosporium. Molecular and Cellular Biology 9: 2743–2747.Google Scholar
  29. Schoemaker, H. E., and Leisola, M. S. A. 1990. Degradation of lignin by Phanerochaete chrysosporium. Journal of Biotechnology 13:101–109.Google Scholar
  30. Wall, M. B., Lightfoot, E. N., Cameron, D. C., Cockrem, M. C. M., and Leatham, G. F. 1990. Design of a biopulping reactor. Transactions of the Mycological Society of the Republic of China. In press.Google Scholar
  31. Wegner, T. H., Leatham, G. F., Myers, G. C., and Kirk, T. K. 1991. Biological treatments as an alternative to chemical pretreatments in high-yield wood pulping. Tappi Journal. In press.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • T. Kent Kirk
  • Richard R. Burgess
  • John W. KoningJr.

There are no affiliations available

Personalised recommendations