Heterologous Protein Expression in Filamentous Fungi

  • Sarah F. Covert
  • Daniel J. Cullen


The molecular genetics of filamentous fungi has advanced considerably over the past 7 years. In numerous investigations a recurring theme has emerged: filamentous fungi are permissive with respect to the expression of foreign genes. This finding is significant because heterologous gene expression has proved to be central to the development of two important research areas: transformation systems for an increasing number of taxonomically diverse fungi, and fungal host systems for the secretion of foreign proteins, including commercial enzymes and pharmaceuticals.


Filamentous Fungus Neurospora Crassa Aspergillus Nidulans Penicillium Chrysogenum Aspartyl Protease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alic, M., Clark, E. K., Kornegay, J. R., and Gold, M. H. 1990. Transformation of Phanerochaete chrysosporium and Neurospora crassa with the biosynthetic genes from Schizophyllum commune. Current Genetics 17: 305–311.CrossRefGoogle Scholar
  2. Alic, M., Kornegay, J. R., Pribnow, D., and Gold, M. H. 1989. Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology 55: 406–411.PubMedGoogle Scholar
  3. Armaleo, D., Ye, G., Klein, T. M., Shark, K. B., Sanford, J. C., and Johnston, S. A. 1990. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Current Genetics 17: 97–103.PubMedCrossRefGoogle Scholar
  4. Asch, D. K., and Kinsey, J. A. 1990. Relationship of vector insert size to homologous integration during transformation of Neurospora crassa with the cloned am (GDH) gene. Molecular and General Genetics. 221: 37–43.PubMedCrossRefGoogle Scholar
  5. Ballance, D. J. 1986. Sequences important for gene expression in filamentous fungi. Yeast 2: 229–236.PubMedCrossRefGoogle Scholar
  6. Ballance, D. J., Buxton, F., and Turner, G. 1983. Transformation of Aspergillus nidulans by the orotidine-5-phosphate carboxylase gene of Neurospora crassa. Biochemical and Biophysical Research Communications 112: 284–289.CrossRefGoogle Scholar
  7. Ballance, D. J., and Turner, G. 1985. Development of high frequency transformation vector for Aspergillus nidulans. Gene 36: 321–331.Google Scholar
  8. Berges, T., and Barreau, C. 1989. Heat shock at an elevated temperature improves transformation efficiency of protoplasts from Podospora anserina. Journal of General Microbiology 135: 601–604.Google Scholar
  9. Beri, R. K., and Turner, G. 1987. Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selectable marker. Current Genetics 11: 639–641.PubMedCrossRefGoogle Scholar
  10. Berka, R., Ward, M., Wilson, L. J., Hayenga, K. J., Kodama, K. H., Carlomagano, L. P., and Thompson, S. A. 1990. Molecular cloning and deletion of the gene encoding aspergillopepsin A from Aspergillus awamori. Gene 86: 153–162.PubMedCrossRefGoogle Scholar
  11. Berka, R. M., and Barnett, C. C. 1989. The development of gene expression systems for filamentous fungi. Biotechnological Advances 7: 127–154.CrossRefGoogle Scholar
  12. Binninger, D. M., Skrzynia, C., Pukkila, P. J., and Casselton, L. A. 1987. DNA mediated transformation of the basidiomycete Coprinus cinereus. European Molecular Biology Organization 6: 835–840.Google Scholar
  13. Boel, E., Christensen, T., and Woldike, H. F. 1987. European Patent Application No. 0 238 023 Google Scholar
  14. Buxton, F. P., Gwynne, D. I., and Davies, R. W. 1985. Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene 37: 207–214.Google Scholar
  15. Case, M. E., Schweizer, M., Kushner, S. R., and Giles, N. H. 1979. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proceedings National Academy of Sciences 76: 5259–5263.CrossRefGoogle Scholar
  16. Casselton, L. A., and de la Fuente Herce, A. 1989. Heterologous gene expression in the basidiomycete fungus Coprinus cinereus. Current Genetics 16: 35–40.CrossRefGoogle Scholar
  17. Christensen, T., Woeldike, H., Boel, E., Motensen, S. B., Hjortshoej, K., Thim, L., and Hansen, M. T. 1988. High level expression of recombinant genes in Aspergillus oryzae. Bio/Technology 6: 1419–1422.CrossRefGoogle Scholar
  18. Cooley, R. N., Shaw, R. K., Franklin, F. C. H., and Caten, C. E. 1988. Transformation of the phytopathogenic fungus Septoria nodorum to hygromycin B resistance. Current Genetics 13: 383–389.CrossRefGoogle Scholar
  19. Cullen, D., Gray, G., and Berka, R. 1988. Cloning vectors for Aspergillus and Neuro-spora. Pp. 419–433 in R. Rodriquez and D. Denhardt (eds.), Vectors: A Survey of Molecular Cloning Vectors and Their Uses. Buttersworth, Stoneham, MA.Google Scholar
  20. Cullen, D., Gray, G. L., Wilson, L. J., Hayenga, K. J., Lamsa, M. H., Rey, M., Norton, S., and Berka, R. M. 1987a. Controlled expression and secretion of bovine chymosin in Aspergillus nidulans. Bio/Technology 5: 396–376.CrossRefGoogle Scholar
  21. Cullen, D., Leong, S. A., Wilson, L. J., and Henner, D. J. 1987b. Transformation of Aspergillus nidulans with the hygromycin-resistance gene, hph. Gene 57: 21–26.CrossRefGoogle Scholar
  22. de Graff, L., van den Broeck, H., and Visser, J. 1988. Isolation and transformation of the pyruvate kinase gene of Aspergillus nidulans. Current Genetics 13: 315–321.CrossRefGoogle Scholar
  23. Dhawale, S. S., Paietta, J. V., and Marzluff, G. A. 1984. A new, rapid and efficient transformation procedure for Neurospora. Current Genetics 8: 77–79.CrossRefGoogle Scholar
  24. Diez, B., Alvarez, E., Cantoral, J. M., Barredo, J. L., and Martin, J. F. 1987. Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine5’-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassa. Current Genetics 12: 277–282.CrossRefGoogle Scholar
  25. Fincham, J. R. S. 1989. Transformation in fungi. Microbiological Reviews 53: 148–170.PubMedGoogle Scholar
  26. Goldman, G. H., Montagu, M. V., and Herrera-Estrella, A. 1990. Transformation of Trichoderma harzianum by high-voltage pulse. Current Genetics 17: 169–174.CrossRefGoogle Scholar
  27. Gray, G. L., Hayenga, K., Cullen, D., Wilson, L. J., and Norton, S. 1986. Primary structure of Mucor miehei aspartyl protease: evidence for a zymogen intermediate. Gene 48: 41–53.PubMedCrossRefGoogle Scholar
  28. Gwynne, D. I., Buxton, F. P., Williams, S. A., Garven, S., and Davies, R. W. 1987. Genetically engineered secretion of active human interferon and a bacterial endoglucanase from Aspergillus nidulans. BiolTechnology 5: 713–719.Google Scholar
  29. Hahm, Y. T., and Batt, C. A. 1988. Genetic transformation of an argB mutant of Aspergillus oryzae. Applied and Environmental Microbiology 54: 1610–1611.Google Scholar
  30. Harkki, A., Usitalo, J., Bailey, M., Penttila, M., and Knowles, J. K. C. 1989. A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. BiolTechnology 7: 596–603.Google Scholar
  31. Hinnen, A., Hicks, J. B., and Fink, G. R. 1978. Transformation of yeast chimeric ColE1 plasmid carrying LEU2. Proceedings National Academy of Science 75:1929–1933.Google Scholar
  32. Hynes, M. J. 1989. Complementation of an Aspergillus nidulans mutation by a gene from the basidiomycete Coprinus cinereus. Experimental Mycology 13: 196–198.CrossRefGoogle Scholar
  33. Kelley, J. M., and Hynes, M. J. 1985. Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. European Molecular Biology Organization 4: 475–480.Google Scholar
  34. Kistler, H. C., and Benny, U. K. 1988. Genetic transformation of the fungal wilt pathogen, Fusarium oxysporum. Current Genetics 13: 145–149.CrossRefGoogle Scholar
  35. Kronstad, J. W., Wang, J., Covert, S. F., Holden, D. W., McKnight, G. L., and Leong, S. A. 1989. Isolation of metabolic genes and demonstration of gene disruption in the phytopathogenic fungus Ustilago maydis. Gene 79: 97–106.Google Scholar
  36. Lemmontt, J. F., Wei, C. M., and Dackowski, W. R. 1985. Expression of active human uterine tissue plasminogen activator in yeasts. DNA 4: 419–428.CrossRefGoogle Scholar
  37. Miller, B. L., Miller, K. Y., and Timberlake, W. E. 1985. Direct and indirect gene replacements in Aspergillus nidulans. Molecular and Cellular Biology 5: 1714–1721.Google Scholar
  38. Paietta, J. V., and Marzluf, G. A. 1985. Gene disruption by transformation in Neurospora crassa. Molecular and Cellular Biology 5: 1554–1557.Google Scholar
  39. Parsons, K. A., Chumley, F. G., and Valent, B. 1987. Genetic transformation of the fungal pathogen responsible for rice blast disease. Proceeding National Academy of Sciences 84: 4161–4165.CrossRefGoogle Scholar
  40. Penttila, M., Nevalainen, H., Ratto, M., Salininen, E., and Knowles, J. K. C. 1987. A versatile transformation system for the cellulolytic fungus Trichoderma reesei. Gene 61: 155–164.Google Scholar
  41. Penttila, M., Andre, L., Lehtovaara, P., Bailey, M., Teeri, T., and Knowles, K. C. 1983. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63: 103–112.Google Scholar
  42. Powell, W. A., and Kistler, H. C. 1990. In vivo rearrangement of foreign DNA by Fusarium oxysporum produces linear self-replicating plasmids. Journal of Bacteriology 172: 3163–3171.Google Scholar
  43. Punt, P., Oliver, R. P., Dingemanse, M. A., Pouwels, P. H., and van den Hondel, C. A. A. M. J. J. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from E. coli. Gene 56: 117–124.Google Scholar
  44. Randall, T., Rao, T. R., and Reddy, C. A. 1989. Use of shuttle vector for the transformation of the white rot basidiomycete Phanerochaete chrysosporium. Biochemical Biophysical Research Communications 161: 720–725.CrossRefGoogle Scholar
  45. Rodriquez, R. J., and Yoder, O. C. 1987. Selectable genes for transformation of the fungal plant pathogen Glomerella cingulata f. sp. phaseoli (Colletotrichum lindemuthianum). Gene 54: 73–80.CrossRefGoogle Scholar
  46. Roncero, M. I. G., Jepsen, L. P., Stroman, P., and van Heeswijck, R. 1989. Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84: 335–343.Google Scholar
  47. Salovuori, I., Makarow, M., Rauvala, H., Knowles, J., and Kaariainen, L. 1987. Low molecular weight high-mannose type glycans in a secreted protein of the filamentous fungus Trichoderma reesei. BiolTechnology 5: 152–156.Google Scholar
  48. Saunders, G., Picknett, T. M., Tuite, M. F., and Ward, M. 1989. Heterologous expression in filamentous fungi. Trends in Biotechnology 7: 283–287.CrossRefGoogle Scholar
  49. Smith, D., Burnham, M., Edwards, J., Earl, A., and Turner, G. 1990. Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. BiolTechnology 8: 39–41.Google Scholar
  50. Smith, T. L., Gaskall, J., Berka, R. M., Yang, M., Henner, D. J., and Cullen, D. 1990. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis. Gene 88: 259–262.Google Scholar
  51. Tilburn, J., Scazzacchio, C., Taylor, C. G., Zabicky-Zissman, J. H., Lockington, R. A., and Davies, R. W. 1983. Transformation by integration in Aspergillus nidulans. Gene 26: 205–221.Google Scholar
  52. Turgeon, B. G., Garber, R. C., and Yoder, O. C. 1986. Transformation of the fungal maize pathogen Cochiobolus heterstrophe using the Aspergillus nidulans amdS gene. Molecular and General Genetics 201: 450–453.Google Scholar
  53. Turnbull, I. F., Rand, K., Willets, N. S., and Hynes, M. J. 1989. Expression of the Escherichia coli enterotoxin subunit B gene in Aspergillus nidulans directed by the amdS promoter. Bio/Technology 7: 169–174.CrossRefGoogle Scholar
  54. Upshall, A. 1986. Filamentous fungi in biotechnology. BioTechniques 4: 158–166.Google Scholar
  55. Upshall, A., Kuinar, A., Bailey, M., Parker, M., Favreau, M., Lewison, K., Joseph, M., Maraganore, S., and McKnight, G. 1987. Secretion of active tissue plasminogen activator from the filamentous fungus Aspergillus nidulans. BiolTechnology 5: 1301 1304.Google Scholar
  56. Van Heeswijck, R. 1986. Autonomous replication of plasmids in Mucor transformants. Carlsberg Research Communications 51: 433–443.CrossRefGoogle Scholar
  57. van Heeswijck, R., Ristevski, S., Hynes, M., and Hoogenraad, N. 1990. Complementation of the Aspergillus nidulans argBl mutation by ornithine transcarbamylase cDNA from rat liver. Biochemical and Biophysical Research Communications 168: 1280–1284.PubMedCrossRefGoogle Scholar
  58. Vollmer, S. J., and Yanofsky, C. 1986. Efficient cloning of genes of Neurospora crassa. Proceedings National Academy of Science 83: 4867–4873.Google Scholar
  59. Ward, M. 1989. Heterologous gene expression in Aspergillus. Foundation for Biotechnical and Industrial Fermentations Research 6: 119–128.Google Scholar
  60. Ward, M. 1990. Chymosin production in Aspergillus. In S. A. Leong and R. Berka (eds.), Molecular Industrial Mycology: Systems and Applications. Marcel Dekker, New York.Google Scholar
  61. Ward, M., Kodama, K. H., and Wilson, L. J. 1989. Transformation of Aspergillus awamori and A. niger by electroporation. Experimental Mycology 13: 289–293.CrossRefGoogle Scholar
  62. Ward, M., Wilson, L. J., Kodama, K. H., Rey, M. W., and Berka, R. M. 1990. Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. BiolTechnology 8: 435–440.Google Scholar
  63. Weiss, R. L., Puetz, D., and Cybis, J. 1985. Expression of Aspergillus genes in Neuro-spora crassa. Pp. 280–291 in J. W. Bennett and L. Lasure (eds.), Gene Manipulations in Fungi. Academic Press, New York.Google Scholar
  64. Woloshuk, C. P., Seip, E. R., Payne, G. A., and Adkins, C. R. 1989. Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus. Applied and Environmental Microbiology 55: 86–90.PubMedGoogle Scholar
  65. Yelton, M., Hamer, J. E., and Timberlake, W. E. 1984. Transformation of Aspergillus nidulans using a trpC plasmid. Proceedings National Academy of Sciences 81: 1470–1474.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • Sarah F. Covert
  • Daniel J. Cullen

There are no affiliations available

Personalised recommendations