New Antibiotics: Antifungals from Aspergillus

  • LaVerne D. Boeck


Since the discovery of streptomycin almost 50 years ago (Vanek and Blumauerova, 1986) many screening programs have been operated on worldwide basis in the continuing search for new antimicrobial agents. During this period, literally thousands of antibacterial antibiotics have been discovered, and many have been developed into useful agents for human chemotherapy, veterinary medicine, or animal growth promotion. In the case of the antibacterial β-lactams, improvements in the original antibiotic have been an ongoing development for several decades. These beneficial manipulations have been possible because the structure-activity relationships and biosynthesis of β-lactams have been widely studied and are relatively well understood. This background of knowledge has allowed the use of several methods to achieve improvements. These methods have included such techniques as feeding a substrate to the producing microorganism to “pre-curse” a specific portion of the molecule and chemical modification of the natural metabolite following biosynthesis and isolation. Even such a sophisticated technique as transfer and expression of the penicillin biosynthetic gene cluster from a penicillin-producing organism, Penicillium chrysogenum, to organisms that do not naturally produce penicillin, Neurospora crassa and Aspergillus niger, has been accomplished recently (Smith et al., 1990).


Fatty Acyl Neurospora Crassa Penicillium Chrysogenum Fatty Acyl Chain Fatty Acid Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boeck, L. D., Fukuda, D. S., Abbott, B. J., and Debono, M. 1988. Deacylation of A21978C, an acidic lipopeptide antibiotic complex, by Actinoplanes utahensis. Journal of Antibiotics 441: 1085–1092.Google Scholar
  2. Boeck, L. D., Fukuda, D. S., Abbott, B. J., and Debono, M. 1989. Deacylation of echinocandin B by Actinoplanes utahensis. Journal of Antibiotics 42: 382–388.PubMedCrossRefGoogle Scholar
  3. Boeck, L. D., and Wetzel, R. W. 1990. A54145, a new lipopeptide antibiotic complexfactor control through precursor-directed biosynthesis. Journal of Antibiotics 43: 639–647.CrossRefGoogle Scholar
  4. Debono, M., Bamhart, M., Carrell, C. B., Hoffmann, J. A., Occolowitz, J., Abbott, B. J., Fukuda, D. S., Hamill, R. L., Biemann, K., and Herlihy, W. C. 1987. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. Journal of Antibiotics 40: 761–777.PubMedCrossRefGoogle Scholar
  5. Debono, M., Abbott, B. J., Turner, J. R., Howard, L. C., Gordee, R. S., Hunt, A. S., Barnhart, M., Molloy, R. M., Willard, K. E., Fukuda, D., Butler, T. F., and Zeckner, D. J. 1988. Synthesis and evaluation of LY121019, a member of a series of semi synthetic analogs of the antifungal lipopeptide echyinocandin B. Pp. 152–167 in Antifungal Drugs, Annals of the New York Academy of Sciences, Vol. 544.Google Scholar
  6. Debono, M., Abbott, B. J., Molloy, R. M., Fukuda, D. S., Hunt, A. H., Daupert, V. M., Counter, F. T., Ott, J. L., Carrell, C. B., Howard, L. C., Boeck, L. D., and Hamill, R. L. 1988b. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). Journal of Antibiotics 41: 1093–1105.PubMedCrossRefGoogle Scholar
  7. Debono, M., Abbott, B. J., Fukuda, D. S., Barnhart, M., Willard, K. E., Molloy, R. M., Michel, K. H., Turner, J. R., Butler, T. F., and Hunt, A. H. 1989. Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY 121019). Journal of Antibiotics 42: 389–397.PubMedCrossRefGoogle Scholar
  8. Dewan, M. M., and Sivasithamparam, K. 1988. Occurrence of species of Aspergillus and Penicillium in roots of wheat and ryegrass and their effect on root-rot caused by Gaeumannomyces-graminis var Tritici. Australian Journal of Botany 36:701–710.CrossRefGoogle Scholar
  9. Gordee, R. S., Zeckner, D. J., Ellis, L. F., Thakkar, A. L., and Howard, L. C. 1984. In vitro and in vivo anti-Candida activity and toxicology of LY121019. Journal of Antibiotics 37: 1054–1065.PubMedCrossRefGoogle Scholar
  10. Gordee, R. S., Zeckner, D. J., Howard, L. C., Alborn, W. E., and Debono, M. 1988. Anti-Candida activity and toxicology of LY121019, a novel semisynthetic polypeptide antifungal antibiotic. Pp. 294–309 in Antifungal Drugs, Annals of the New York Academy of Sciences, Vol. 544.Google Scholar
  11. Hamilton-Miller, J. M. T. 1973. Chemistry and biology of the polyene macrolide antibiotics. Bacteriological Reviews 37: 166–196.Google Scholar
  12. Huber, F. M., Pieper, R. L., and Tietz, A. J. 1988. Dispersal of insoluble fatty acid precursors in stirred reactors as a mechanism to control antibiotic factor distribution. Biotechnology Processes, pp. 249–253.Google Scholar
  13. Keller-Juslen, C., Kuhn, M., Loosli, H. R., Petcher, T. J., Weber, H. P., and vonWartburg, A. 1976. Struktur des cyclopeptid-antibiotikums SL 7810 (=echinocandin B). Tetrahedron Letters, pp. 4147–4150.Google Scholar
  14. McDaniel, L. E., Bailey, E. G., Ethiraj, S., and Andrews, H. P. 1976. Application of response surface optimization techniques to polyene macrolide fermentation studies in shake flasks. Pp. 91–98 in L. A. Underkofler (Ed.), Developments in Industrial Microbiology, Vol. 17. American Institute of Biological Sciences, Washington, D.C.Google Scholar
  15. Meunier, F., Lambert, C., and Van der Auwera, P. 1989. In-vitro activity of cilofungin (LY121019) in comparison with amphotericin B. Journal of Antimicrobial Chemotherapy 24: 325–331.PubMedCrossRefGoogle Scholar
  16. Michel, K. H., Hoehn, M. M., Papiska, H. R., and Boeck, L. D. 1981. A30912H, a new antifungal antibiotic. Discovery, fermentation, isolation and characterization. Program and Abstracts of the 21st Interscience Conference on Antimicrobial Agents and Chemotherapy, Nov. 4–6, No. 409. Chicago.Google Scholar
  17. Mizoguchi, J., Saito, T., Mizuno, K., and Hayano, K. 1977. On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. Journal of Antibiotics 30: 308–312.PubMedCrossRefGoogle Scholar
  18. Monaghan, R. L., and Koupal, L. R. 1989. Use of the Plackett & Burman technique in a discovery program for new natural products. Pp. 25–32 in Demain, A. L., Somkuti, G. A., Hunter-Cevera, J. C., and Rossmore, H. W. (eds.), Novel Microbial Products for Medicine and Agriculture. Elsevier, Amsterdam and New York.Google Scholar
  19. Pfaller, M., Riley, J., and Koerner, T. 1989. Effects of cilofungin (LY101219) on carbohydrate and sterol composition of Candida albicans. European Journal of Clinical Microbiology and Infectious Diseases 8:1067–1070.CrossRefGoogle Scholar
  20. Raper, K. B., and Fennell, D. I. 1965. The genus Aspergillus. Williams and Wilkins, Baltimore.Google Scholar
  21. Roy, K., Mukhopadhyay, T., Reddy, G. C. S., Desikan, K. R., and Ganguli, B. N. 1987. Mulundocandin, a new lipopeptide antibiotic. I. Taxonomy, fermentation, isolation and characterization. Journal of Antibiotics 40: 275–280.PubMedCrossRefGoogle Scholar
  22. Smith, D. J., Burnham, M. K. R., Edwards, J., Earl, A. J., and Turner, G. 1990. Cloning and heterologous expression of the penicillin biosynthetic gene cluster from Penicillium chrysogenum. Bio/Technology 8:39–41.PubMedCrossRefGoogle Scholar
  23. Vanek, Z., and Blumauerova, M. 1986. Physiology and pathophysiology of secondary metabolite production. Pp. 3–25 in Z. Vanek and Z. Hostalek (eds.), Overproduction of Microbial Metabolites. Butterworth, Stoneham, MA.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • LaVerne D. Boeck

There are no affiliations available

Personalised recommendations