Genetic Manipulation of the β-lactam Antibiotic Biosynthetic Pathway

  • Paul L. Skatrud
  • JoAnn Hoskins
  • John S. Wood
  • Matthew B. Tobin
  • James R. Miller
  • Stephen Kovacevic
  • Cathleen A. Cantwell
  • Stephen W. Queener

Abstract

Penicillins and cephalosoporins are members of the large group of sulfur-containing β-lactam antibiotics. Biosynthesis of the naturally occurring β-lactams, penicillin G, and cephalosporin C is illustrated in Figure 3.1. The key structural similarity of these heterocyclic compounds is the four-membered β-lactam ring (illustrated in the inset in Fig. 3.1), which is fused to a five-membered thiazolidine ring in penicillin G or a six-membered dihydrothiazine ring in cephalosporin C. Because of this structural similarity, the mode of action of all β-lactam antibiotics is the same: they interfer with bacterial cell wall synthesis and cause death by cell lysis. Penicillin G has been modified chemically to form many other clinically useful antibiotics that extended the spectrum of activity and, in some cases, provided resistance to penicillinases encoded by resistant pathogens. Although naturally resistant to penicillinases, cephalosporin C is not used clinically. However, chemical modifications of cephalosporin C have produced a variety of clinically useful agents, further extending the activity spectrum of β-lactam compounds.

Keywords

Filamentous Fungus Gene Disruption Aspergillus Nidulans Industrial Strain cejE Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, J. E., Bird, J. W., Field, R. A., O’Callaghan, N. M., Schofield, C. J. 1990. Isolation and partial characterisation of ACV synthetase from Cephalosporium acremonium and Streptomyces clavuligerus. The Journal of Antibiotics 43 (8): 1055–1057.PubMedCrossRefGoogle Scholar
  2. Beni, R. K., and Turner, G. 1987. Transformation of P. chrysogenum using the A. nidulans amdS gene as a dominant selective marker. Current Genetics 11: 639–641.CrossRefGoogle Scholar
  3. Bunnell, C. A. 1986. Industrial manufacture of cephalosporins. Pp. 255–284 in Queener, S. F., Webber, J. A., and Queener, S. W. (eds.), Beta-lactam Antibiotics for Clinical Use. Marcel Dekker, New York.Google Scholar
  4. Cantwell, C. A., Beckmann, R. J., Dotzlaf, J. E., Fisher, D. L., Skatrud, P. L., Yeh, W. -K., and Queener, S. W. 1990. Cloning and expression of a hybrid S. clavuligerus cefE gene in P. chrysogenum. Current Genetics 17: 213–221.PubMedCrossRefGoogle Scholar
  5. Can, L. G., Skatrud, P. L., Scheetz, M. E., Queener, S. W., and Ingolia, T. D. 1986. Cloning and expression of the isopenicillin N synthetase gene from P. chrysogenum. Gene 48: 257–266.Google Scholar
  6. Hoskins, J. A., O’Callaghan, N., Queener, S. W., Cantwell, C. A., Wood, J. S., Chen, V. J., and Skatrud, P. L. 1990 Gene disruption of the pcbAB gene encoding ACV synthetase in Cephalosporium acremonium. Current Genetics 18: 523–530.PubMedCrossRefGoogle Scholar
  7. Hynes, M. J., Corrick, C. M., and King, J. A. 1983. Isolation of genomic clones containing the amdS gene of A. nidulans and their use in the analysis of structural and regulatory mutations. Molecular and Cellular Biology 3: 1430–1439.PubMedGoogle Scholar
  8. Ingolia,T. D.,and Queener,S. W. 1989. Beta-lactam biosynthetic genes.Medicinal Research Reviews9:(2)245–264.Google Scholar
  9. Kolar, M., Punt, P. J., van den Hondel, C. A. M. J. J., and Schwab, H. 1988. Transforma-52 I Skatrud et al.Google Scholar
  10. tion of P. chrysogenum using dominant selection markers and expression of an E. coli lacZ fusion gene. Gene 62:127–134.Google Scholar
  11. Kovacevic, S., Weigel, B. J., Tobin, M. B., Ingolia, T. D., and Miller, J. R. 1989. Cloning, characterization, and expression in E. coli of the S. clavuligerus gene encoding deacetoxycephalosporin C. synthetase. Journal of Bacteriology 171:(2)754–760.Google Scholar
  12. MacDonald, K. D., Hutchinson, J. M., and Gillet, W. A. 1963. Isolation of auxotrophs of P. chrysogenum and their penicillin yields. Journal of General Microbiology 33: 365374.Google Scholar
  13. Queener, S. W., Ingolia, T. D., Skatrud, P. L., Chapman, J. L., and Kaster, K. R. 1985. A system for genetic transformation of Cephalosporium acremonium. Pp. 468–472 in L. Lieve (ed.), Microbiology-1985. American Society for Microbiology, Washington, DC.Google Scholar
  14. Queener, S. W., and Lively, D. H. 1986. Screening and selection for strain improvement. Pp. 155–169 in A. L. Demain and N. A. Solomon (eds.), Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC.Google Scholar
  15. Samson, S. M., Belagaje, R., Blankenship, D. T., Chapman, J. L., Perry, D., Skatrud, P. L., VanFrank, R. M., Abraham, E. P., Baldwin, J. E., Queener, S. W., and Ingolia, T. D. 1985. Isolation, sequence determination and expression in E. coli of the isopenicillin N synthetase gene from C. acremonium. Nature 318: 191–194.Google Scholar
  16. Samson, S. M., Dotzlaf, J. E., Slisz, M. L., Becker, G. W., Van Frank, R. M., Veal, L. E., Yeh, W. -K., Miller, J. R., Queener, S. W., and Ingolia, T. D. 1987. Cloning and expression of the fungal expandase/hydroxylase gene involved in cephalosporin biosynthesis. BiolTechnology 5: 1207–1214.Google Scholar
  17. Skatrud, P. L., Fisher, D. L., Ingolia, T. D., and Queener, S. W. 1986. Improved transformation of C. acremonium Pp. 111–119 in M. Alacevic, D. Hranueli, and Z. Toman (eds.), Fifth International Symposium on the Genetics of Industrial Microorganisms. American Society for Microbiology, Washington, DC.Google Scholar
  18. Skatrud, P. L., Fisher, D. L., Chapman, J. L., Cantwell, C. A., and Queener, S. W. 1987a. Strain improvement studies in Penicillium chrysogenum using the cloned P. chrysogenum isopenicillin N synthetase gene and the amdS gene of Aspergillus nidulans. SIM News (Program Issue-1987 Annual Meeting), 37 (4): 77.Google Scholar
  19. Skatrud, P. L. and Queener, S. W. 1989. An electrophoretic molecular karyotype for an industrial strain of Cephalosporium acremonium. Gene 78: 331–338.PubMedCrossRefGoogle Scholar
  20. Skatrud, P. L., Queener, S. W., Carr, L. G., and Fisher D. L. 1987b. Efficient integrative transformation of C. acremonium. Current Genetics 12: 337–348.PubMedCrossRefGoogle Scholar
  21. Skatrud, P. L., Tietz, A. J., Ingolia, T. D., Cantwell, C. A., Fisher, D. L., Chapman, J. L., and Queener, S. W. 1989. Use of recombinant DNA to improve production of cephalosporin C in C. acremonium. BiolTechnology 7: 477–485.Google Scholar
  22. Tobin, M. B., Fleming, M. D., Skatrud, P. L., and Miller, J. R. 1990. Molecular characterization of the acyl-coenzyme A: isopenicillin N acyltransferase gene (penDE) from Penicillum chrysogenum and Aspergillus nidulans and activity of recombinant enzyme in Escherichia coli. Journal of Bacteriology 172 (1): 5908–5914.Google Scholar
  23. Veenstra, A. E., van Solingen, P., Huininga-Muurling, H., Koekman, B. P., Groenen, M. A. M., Smaal, E. B., Kattevilder, A., Alvarez, E., Barredo, J. L., and Martin J. F. 1989. Cloning of penicillin biosynthetic genes. Pp. 262–269 in C. L. Hershberger, S. W. Queener, and G. Hegeman (eds.), Genetics and Molecular Biology of Industrial Microorganisms. American Society for Microbiology, Washington, DC.Google Scholar
  24. Weigel,B. J.,Burgett,S. G.,Chen,V. J.,Skatrud,P. L.,Frolik,C. A.,Queener,S. W.,and Ingolia,T. D. 1988. Cloning and expressionin Escherichia coli of isopenicillin N synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. Journal of Bacteriology170:(9)3817–3826.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • Paul L. Skatrud
  • JoAnn Hoskins
  • John S. Wood
  • Matthew B. Tobin
  • James R. Miller
  • Stephen Kovacevic
  • Cathleen A. Cantwell
  • Stephen W. Queener

There are no affiliations available

Personalised recommendations