Advertisement

Bioherbicides

  • Eduardo E. Trujillo

Abstract

Aggressive plant pathogens have the potential to decimate susceptible monocropping systems when environmental conditions favor disease epidemics. The most devastating example of this potential in modern times occurred in the years 1846–1847 in Ireland, soon after Phytophthora infestans (Mont.) de Bary., the late blight pathogen of potatoes, was introduced to Europe from the New World. The ensuing late blight epidemics following the introduction of this pathogen in 1844–1845 destroyed the potato crop of Europe. Two years later the disease spread to Ireland’s monocropping potato system, devastating it. The loss of the potato crop caused famine among millions of people and forced their mass migration to the United States (Large, 1940).

Keywords

Biological Control Colletotrichum Gloeosporioides Tank Fermentation Host Range Study Biological Weed Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. 1912. Chapter 308, An Act to Regulate the Importation of Nursery Stock and Other Plants and Plant Products. U.S. Statutes at Large 37, 315.Google Scholar
  2. Anonymous. 1957. Public Law 85–36, Federal Plant Pest Act. U.S. Statutes at Large 71, 31Google Scholar
  3. Anonymous. 1980. Chapter 6, Insecticides and Environmental pesticide Control. United States Code Annotated. Title 7, 244.Google Scholar
  4. Anonymous. 1982. Pesticide Registration Proposed Data Requirements Part III. Proposed Rules. Federal Register 47 (227): 53192–53217.Google Scholar
  5. Anonymous. 1983. Pesticide Registration: Proposed Data Requirements, Corrections. Federal Register. 48 (12): 2142–2147.Google Scholar
  6. Boyette, C. D., Templeton, G. E., and Smith, R. J., Jr. 1979. Control of winged waterprimrose (Jussiae decurrens) and northern jointvetch (Aeschnomene virginica) with fungal pathogens. Weed Science 27: 497–501.Google Scholar
  7. Brodie, Harold J. 1978. Fungi: Delight of Curiosity. University of Toronto Press. Toronto.Google Scholar
  8. Carefoot, G. L., and Sproat, E. R. 1967 Famine on the Wind. Rand McNally, Chicago.Google Scholar
  9. Chiang, M., Van Dyke, C. G., and Leonard, K. J. 1989. Evaluation of endemic foliar fungi for potential biological control of Johnsongrass (Sorghum halepense): screening and host range tests. Plant Disease 73: 459–464.CrossRefGoogle Scholar
  10. Churchill, B. W., 1982. Mass production of microorganisms for biological control. Pp. 139–156 in R. Charudattan and H. L. Walker (eds;) Biological Control of Weeds with Plant Pathogens. Wiley, New York.Google Scholar
  11. Conway, K. E. 1976. Evaluation of Cercospora rodmanii as a biological control of waterhyacinths. Phytopathology 66: 914–917.CrossRefGoogle Scholar
  12. Conway, K. E., and Freeman, T. E. 1976. The potential of Cercospora rodmanii as a biological control of waterhyacinths. Pp. 207–209 in T. E. Freeman (ed.), Proc. IV Int. Symp. Biol. Contr. Weeds, University of Florida, Gainesville.Google Scholar
  13. Conway, K. E., and Freeman, T. E. 1977. Host specificity of Cercospora rodmanii, a potential biological control of waterhyacinth. Plant Disease Reports 61: 262–266.Google Scholar
  14. Conway, K. E., Freeman, T. E., and Charudattan R. 1978. Method and compositions for controlling waterhyacinth. U.S. Patent No. 4,097, 261.Google Scholar
  15. Cullen, J. M., Kable, P. F., and Catt, M. 1973. Epidemic spread of a rust imported for biological control. Nature (London) 224: 462–464.CrossRefGoogle Scholar
  16. Cullen, J. M., and Hasan, S. 1988. Pathogens for the control of weeds. Philosophical Transactions of the Royal Society London B 318: 213–224.CrossRefGoogle Scholar
  17. Daniel, J. T., Templeton, G. E., Smith, R. J., and Fox, W. T. 1969. Biological control of northern jointvetch in rice with an endemic fungal disease. Weed Science 21: 303–307.Google Scholar
  18. Feichtenberger, E., Zentmyer, G. A., and Menge, J. A. 1983. Identity of Phytophthora isolated from milkweed vine. Phytopathology 73: 50–55.Google Scholar
  19. Freeman, T. E., Charudattan, R., and Conway, K. E. 1976. Status of the use of plant pathogens in biological control of weeds. Pp. 201–206 in T. E. Freeman (ed.), Proc. IV Int. Symp. Biol. Contr. Weeds. Inst. Food and Agric. Sci., University of Florida, Gainesville, 1976.Google Scholar
  20. Freeman, T. E., and Charudattan R. 1981. Biological control of weeds with plant pathogens. Prospectus-1980. Pp. 293–299 in E. S. Delfosse (ed.), Proc. V Int. Symp. Biol. Contr. Weeds, Brisbane, Australia, 1980. CSIRO, Melbourne.Google Scholar
  21. Freeman, T. E., and Charudattan, R. 1985. Conflicts in the use of plant pathogens as biocontrol agents for weeds. Pp. 351–357 in E. S. Delfosse (ed.), Proc. IV Int. Symp. Biol. Contr. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
  22. French, D. W., and Schroeder, D. B. 1969. Oak wilt fungus, Ceratocystis fagacearum as a selective silvicide. Forest Science 15: 198–203.Google Scholar
  23. Horsfall, J. G., and Cowling, E. B. 1978. Some epidemics man has known. Pp. 17–32 in J. G. Horsfall and E. B. Cowling (eds.), Plant Diesease: An Advanced Treatise, Vol. 2. How Disease Develops. Academic Press, New York.Google Scholar
  24. Jones, R. W., Thomas-Lanini, W., and Hancock, J. G. 1988. Plant growth response to the phytotoxin viridiol produced by the fungus Gliocladium virens. Weed Science 36: 683–687.Google Scholar
  25. Kenney, D. S. 1986. DeVine-The way it was developed-An industrialist’s view. Weed Science 34 (Suppl. 1): 15–16.Google Scholar
  26. Large, E. C. 1940. Advance of the Fungi. Henry Holt, New York.Google Scholar
  27. Latterell, F. M. 1975. Phenotypic stability of pathogenic races Pyricularia oryzae, and its implications for breeding of blast-resistant rice varieties. Pp. 199–234 in Proc. Seminar Horizontal Resis. Blast Dis. Rice. October 1971. CIAT, Cali, Colombia.Google Scholar
  28. Latterell, F. M., and Rossi, A. E. 1985. Longevity and pathogenic stability of Pyricularia oryzae. Phytopathology 76: 231–235.CrossRefGoogle Scholar
  29. McCain, A. H., and Noviello,C. 1985. Biological control of Cannabis sativa. Pp. 635–642 in E. S. Delfosse (ed.), Proc. VI Symp. Biol. Cont. Weeds, 19–25 August 1984, Vancouver, Canada. Agric. Can.Google Scholar
  30. Moscow, D., and Lindow, S. E. 1989. Infection of milk thistle (Silybum marianum) leaves by Septoria silybi. Phytopathology 79: 1085–1090.CrossRefGoogle Scholar
  31. Oehrens, E. B., and Gonzales, S. M. 1974. Introducción de Phragmidium violaceum (Schulz) Winter como factor de control biologico de zarzamora (Rubus constrictus Lef. et M. Y R. ulmifolius Schott.) Agro Sur 2: 30–33.Google Scholar
  32. Oehrens, E. 1977. Biological control of the blackberry through the introduction of rust, Phragmidium violaceum, in Chile. FAO Plant Protection Bulletin 25 (1): 26–28.Google Scholar
  33. Phatak, S. C., Sumner, D. R., Wells, H. D., Bell, D. K., and Glaze, N. C. 1983. Biological control of yellow nutsedge with the indigenous rust fungus Puccinia canaliculata. Science 219: 1446–1447.Google Scholar
  34. Podger, F. D., Dopel, R. F., and Zentmyer, G. A. 1965. Association of Phytophthora cinnamomi with a disease of Eucalyptus marginata forest in western Australia. Plant Disease Reports 49: 943–947.Google Scholar
  35. Quimby, Jr., P. C. 1982. Impact of diseases on plant populations. Pp. 47–60 in R. Charudattan and H. L. Walker (eds.), Biological Control of Weeds with Plant Pathogens. Wiley, New York.Google Scholar
  36. Ridings, W. H., Mitchell, D. J., Schoulties, C. L., and El-Gholl, N. E. 1976. Biological control of milkweed vine in Florida citrus groves with a pathotype of Phytophthora citrophthora. Pp. 224–240 in T. E. Freeman, (ed.), Proc. IV Int. Symp. Biol. Contr. Weeds. University of Florida, Gainesville.Google Scholar
  37. Ridings, W. H. 1986. Biological control of stranglervine in citrus—a researcher’s view. Weed Science 34 (Suppl. 1): 31–32.Google Scholar
  38. Schroeder, D. 1983. Biological control of weeds. Pp. 41–78 in Commonwealth Agr. Bureaux (ed.), Recent Advances in Weed Research. Farnham Royal, Slough, England.Google Scholar
  39. Smith, Jr., R. J. 1986. Biological control of northern jointvetch (Aeschynomene virginica) in rice (Oryza sativa) and soybeans Glycine max)-a researcher’s view. Weed Science 34 (Suppl. 1): 17–23.Google Scholar
  40. TeBeest, D. O., and Templeton G. E. 1985. Mycoherbicides: progress in the biological control of weeds. Plant Disease 69: 6–10.Google Scholar
  41. Templeton, G. E., TeBeest, D. O., and Smith, Jr., R. J. 1976. Development of an endemic fungal pathogen as a mycoherbicide for biocontrol of northern jointvetch in rice. Pp. 214–216 in T. E. Freeman (ed.) Proc. IV Int. Symp. Biol. Contr. Weeds, University of Florida, Gainesville.Google Scholar
  42. I.
    Templeton, G. E. and Smith, Jr. R. J. 1977. Managing weeds with Pathogens. Pp. 167–176 in: J. G. Horsfall and E. B. Cowling (eds.), Plant Disease an Advanced Treatise. Vol. I, How Disease is Managed. Academic Press, New York, 465 pp.Google Scholar
  43. Templeton, G. E., TeBeest, D. O. and Smith, Jr., R. J. 1979. Biological weed control with mycoherbicides. Ann Rev. Phytopathol. 17: 301–310.CrossRefGoogle Scholar
  44. Templeton, G. E. and Trujillo, E. E. 1981. Pp. 345–350 in: David Pimentel, eds, CRC Handbook of Pest Management in Agriculture. Vol. II. CRC Press, Boca Raton, FL.Google Scholar
  45. Templeton, G. E. 1982. Status of weed control with plant pathogens. Pp. 29–44 in R. Charudattan and H. L. Walker (eds.), Biological Control of Weeds with Plant Pathogens. Wiley, New York.Google Scholar
  46. Trujillo, E. E., and Obrero, F. P. 1976. Cephalosporium wilt of Cassia surattensis. Pp. 217–220 in T. E. Freeman (ed.), Proc. IV Int. Symp. Biol. Contr, Weeds. University of Florida, Gainesville.Google Scholar
  47. Trujillo, E. E. 1976. Biological control of Hamakua pamakani with plant pathogens (Abstr.) Proceedings American Phytopathology Society 3: 298.Google Scholar
  48. Trujillo, E. E. 1985. Biological control of Hamakua pa-makani with Cercosporella sp. in Hawaii. Pp. 661–671 in E. S. Delfosse (ed.), Proc. VI Int. Symp. Biol. Contr. Weeds. 19–25 August 1984. Vancouver, Canada. Agric. Can.Google Scholar
  49. Trujillo, E. E., Latterell, F. M., and Rossi, A. E. 1986. Colletotrichum gloeosporioides a possible biological control agent for Clidemia hirta in Hawaiian forests. Plant Disease 70: 974–976.Google Scholar
  50. Trujillo, E. E., Aragake, M., and Schoemaker, R. A. 1987. Infection, disease development, and axenic culture of Entyloma compositarum, the cause of Hamakua pamakani blight in Hawaii. Plant Disease 72: 355–357.CrossRefGoogle Scholar
  51. Upjohn Co. 1982. Collego,TM Technical Manual. TUCO Division of the Upjohn Co. Kalamazoo, MI.Google Scholar
  52. Walker, H. L. 1981. Fusarium lateritium: A pathogen of spurred anoda (Anoda cristata), prickly sida (Sida spinosa), and velvet leaf (Abutilon theophrasti). Weed Science 29: 629–631.Google Scholar
  53. Walker, H. L., and Boyette, C. D. 1985. Biocontrol of sicklepod (Cassia obtusifolia) in soybeans (Glycine max) with Alternaria cassiae. Weed Science 33: 212–215.Google Scholar
  54. Walker, H. L., and Connick, Jr., W. J. 1983. Sodium alginate for production and formulation of mycoherbicides. Weed Science 31: 333–338.Google Scholar
  55. Walker, H. L., and Riley, J. A. 1982. Evaluation of Alternaria cassiae for the biocontrol of sicklepod (Cassia obtusifolia). Weed Science 30: 351–654.Google Scholar
  56. Walker, H. L., and Sciumbato, G. L. 1979. Evaluation of Alternaria macrospora as a potential biocontrol agent of spurred anoda (Anoda cristata): host range studies. Weed Science 27: 612–614.Google Scholar
  57. Weidemann, G. J., and Templeton, G. E. 1988. Efficacy and soil persistence of Fusarium solani (Mart.) Snyd. & Han, f.sp. cucurbitae. Plant Disease 72: 36–38.CrossRefGoogle Scholar
  58. Wilson, Charles L. 1969. Use of plant pathogens in weed control. Pp. 411–434 in J. G. Horsfall, K. F. Baker, and D. S. Hildebrand (eds.), Annual Review of Phytopathology, Vol. 7, Annual Reviews, Inc., Palo Alto, CA.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1992

Authors and Affiliations

  • Eduardo E. Trujillo

There are no affiliations available

Personalised recommendations