Bifurcation with Symmetry in Multi-Phase Flows

  • Manfred F. Göz
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 98)


A common approach to describe particulate flows consists in the use of (volume or ensemble) averaged equations of motion. These are coupled sets of compressible Navier-Stokes equations representing a typical wave-hierarchy problem with dissipation and expressing another hierarchy of symmetry-breaking instabilities. The general features of these hierarchies, their connection, and the details of the first two stages of instabilities are discussed.


Solitary Wave Bifurcation Point Secondary Instability Transverse Structure Kinematic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Hetsroni (ed.), Handbook of multiphase systems (McGraw-Hill, New York, 1982).zbMATHGoogle Scholar
  2. [2]
    D.A. Drew, Mathematical modelling of two-phase flow, Ann. Rev. Fluid Mech. 15 (1983), pp. 261–291.CrossRefGoogle Scholar
  3. [3]
    M. Golubitsky, I. Stewart, and D.G. Schaeffer, Singularities and groups in bifurcation theory, Vol. II, AMS 69 ( Springer, Berlin, 1988 ).zbMATHCrossRefGoogle Scholar
  4. [4]
    R. Jackson, Fluid mechanical theory, in: J.F. Davidson and D. Harrison (eds.), Fluidization ( Academic Press, London, 1971 ), pp. 65–119.Google Scholar
  5. [5]
    S.K. Garg and J.W. Pritchett, Dynamics of gas-fluidized beds, J. Appl. Phys. 46 (1975), 4493–4500.CrossRefGoogle Scholar
  6. [6]
    M.F. Göz, On the origin of wave patterns in fluidized beds, J. Fluid Mech. 240 (1992), 370–404.CrossRefGoogle Scholar
  7. [7]
    J.F. Richardson, Incipient fluidization and particulate systems, in: J.F. Davidson and D. Harrison (eds.), Fluidization ( Academic Press, London, 1971 ), pp. 2664.Google Scholar
  8. [8]
    J.T.C. Liu, Note on a wave-hierarchy interpretation of fluidized bed instabilities, Proc. Roy. Soc. A 380 (1982), 229–239.zbMATHCrossRefGoogle Scholar
  9. [9]
    A. Kluwick, Small-amplitude finite-rate waves in suspensions of particles in fluids, Z. Angew. Math. Mech. 63 (1983), 161–171.zbMATHCrossRefGoogle Scholar
  10. [10]
    G.H. Ganser and J.H. Lightbourne, Oscillatory traveling waves in a hyperbolic model of a fluidized bed, Chem. Engng. Sci. 46 (1991), 1339–1347.CrossRefGoogle Scholar
  11. [11]
    J.T.C. Liu, Nonlinear unstable wave disturbances in fluidized beds, Proc. Roy. Soc. A 389 (1983), 331–347.zbMATHCrossRefGoogle Scholar
  12. [12]
    G.H. Ganser and D.A. Drew, Nonlinear periodic waves in a two-phase flow model, SIAM J. Appl. Math. 47 (1987), 726–736.MathSciNetzbMATHGoogle Scholar
  13. [13]
    G.H. Ganser and D.A. Drew, Nonlinear stability analysis of a uniformly fluidized bed, Intl. J. Multiphase Flow 16 (1990), 447–460.zbMATHCrossRefGoogle Scholar
  14. [14]
    T.S. Komatsu and H. Hayakawa, Nonlinear waves in fluidized beds, Phys. Lett. A 183 (1993), 56–62.CrossRefGoogle Scholar
  15. [15]
    S.E. Harris and D.G. Crighton, Solitons, solitary waves and voidage disturbances in gas-fluidized beds, J. Fluid Mech. 266 (1994), 243–276.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    M.F. Göz, Small Froude number asymptotics in two-dimensional two-phase flows, Phys. Rev. E 52 (1995), 3697–3710.Google Scholar
  17. [17]
    M.F. Göz, A “complete” two-dimensional nonlinear wave equation describing the small Froude number regime of multiphase flows, in: L. Pust and F. Peterka (eds.), Proceedings of the 2nd European Nonlinear Oscillations Conference (Prague 1996), Vol. 1, 183–186.Google Scholar
  18. [18]
    M.F. Göz, B.J. Glasser, Y.G. Kevrekidis and S. Sundaresan, Traveling waves in multi-phase flows, in: M. Rahman and C.A. Brebbia (eds.), Advances in Fluid Mechanics, Comp. Mech. Publ. ( South Hampton/Boston 1996 ), 307–316.Google Scholar
  19. [19]
    M.F. Göz, Bifurcation of plane voidage waves in fluidized beds, Physica D 65 (1993), 319–351.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M.F. Göz and S. Sundaresan, The growth and saturation of one-and two-dimensional disturbances in fluidized beds,submitted to J. Fluid Mech.Google Scholar
  21. [21]
    H. Hayakawa, T.S. Komatsu, and T. Tsuzuki, Pseudo-solitons in fluidized beds, Physica A 204 (1994), 277–289.CrossRefGoogle Scholar
  22. [22]
    M.F. Göz, Quasi-stationary instabilities in fluidized beds, Phys. Lett. A 200 (1995), 355–359.CrossRefGoogle Scholar
  23. [23]
    J.A. Hernandez and J. Jimenez, Bubble formation in dense fluidised beds, in: J. Jimenez (ed.), Proc. NATO Advanced Research Workshop on the Global Geometry of Turbulence (Plenum 1991 ), pp. 133–142.CrossRefGoogle Scholar
  24. [24]
    M. F. Göz, Instabilities and the formation of wave patterns in fluidized beds, in: G. Gouesbet and A. Berlemont (eds.), Instabilities in Multiphase Flows (Plenum 1993 ), pp. 251–259.Google Scholar
  25. [25]
    A.K. Didwania and G.M. Homsy, Flow regimes and flow transitions in liquid fluidized beds, Intl. J. Multiphase Flow 7 (1981), 563–580.CrossRefGoogle Scholar
  26. [26]
    A.K. Didwania and G.M. Homsy, Resonant side-band instabilities in wave propagation in fluidized beds, J. Fluid Mech. 122 (1982), 433–438.zbMATHCrossRefGoogle Scholar
  27. [27]
    M.F. Göz, Transverse instability of plane wavetrains in gas-fluidized beds, J. Fluid Mech. 303 (1995), 55–82.zbMATHCrossRefGoogle Scholar
  28. [28]
    G.K. Batchelor and J.M. Nitsche, Instability of stationary unbounded stratified fluid, J. Fluid Mech. 227 (1991), 357–391.zbMATHCrossRefGoogle Scholar
  29. [29]
    G.K. Batchelor, Secondary instability of a gas fluidized bed, J. Fluid Mech. 257 (1993), 359–371.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    B.J. Glasser, I.G. Kevrekidis, and S. Sundaresan, One-and two-dimensional travelling wave solutions in gas-fluidized beds, J. Fluid Mech. 306 (1996), 183–221.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    B.J. Glasser, I.G. Kevrekidis, and S. Sundaresan, Fully-developed traveling wave solutions and bubble formation in fluidized beds, to appear in J. Fluid Mech.Google Scholar
  32. [32]
    K. Anderson, S. Sundaresan, and R. Jackson, Instabilities and the formation of bubbles in fluidized beds, J. Fluid Mech. 303 (1995), 327–366.zbMATHCrossRefGoogle Scholar
  33. [33]
    R.H. Wilhelm and M. Kwauk, Fluidization of solid particles, Chem. Engng. Progr. 44 (1948), 201–218.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Manfred F. Göz
    • 1
  1. 1.Department of Chemical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations