Compressible Flow of Granular Materials

  • Tommaso Astarita
  • Raffaella Ocone
  • Gianni Astarita
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 98)


The analysis of compressible flow of granular materials is considered. The necessary thermodynamic background has recently been developed, and this is reviewed from the viewpoint of compressible flow theory. Elementary problems can be solved rather easily following traditional methods of classical gas dynamics. However, even moderately complex problems present subtle unexpected difficulties, which are shown to be related to the inelasticity of particle-particle collisions.


Granular Material Particulate Phase Bulk Viscosity Compressible Flow Granular Flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anderson, T.B., and R. Jackson, A Fluid Mechanical Description of Fluidized Beds, Ind. Eng. Chem. Fund., 6, 527–539 (1967).CrossRefGoogle Scholar
  2. [2]
    Astarita, G., Thermodynamics. An Advanced Textbook for Chemical Engineers, Plenum, New York, 1989.Google Scholar
  3. [3]
    Astarita, G., and Sarti, G.C., Thermomechanics of Compressible Materials with Entropic Elasticity, in Theoretical Rheology, J.F. Hutton, J.R.A. Pearson and K. Walters Eds., Applied Science Publ., Barking, 1975.Google Scholar
  4. [4]
    Astarita, G., and R. Ocone, Large-Scale Statistical Thermodynamics and Wave Propagation in Granular Flow, I & EC Research, 33, 2280–2287 (1994).Google Scholar
  5. [5]
    Atkinson, C.M., and H.K. Kytomaa, Acoustic Wave Speed and Attenuation in Suspensions, Intl. J. Multiphase Flow, 15, 577–592 (1992).CrossRefGoogle Scholar
  6. [6]
    Bagnold, R.A., Experiments on a Gravity-Free Dispersion of Large Solid Particles in a Newtonian Fluid under Shear, Proc. R.y. Soc. London, A225, 49–63 (1954).CrossRefGoogle Scholar
  7. [7]
    Batchelor, G.K., A New Theory for the Instability of a Uniform Fluidized Bed, J. Fluid Mech., 193, 75–110 (1988).MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    Borderies, N.P. Goldreich, and S.A. Tremaine, A Granular Flow Model for Dense Planetary Rings, Icarus, 63, 406–420 (1985).CrossRefGoogle Scholar
  9. [9]
    Bowen, R.M., Continuum Physics, A.C. Eringen Ed., Academic Press, vol. II, New York, 1971.Google Scholar
  10. [10]
    Coleman, B.D., and W. Noll, The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity, Arch. Ratl. Mech. Anal., 13, 167–178 (1963).MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Courant, R., and D. Hilbert, Methods of Mathematical Physics, Interscience, New York, 1952.Google Scholar
  12. [12]
    Da Vinci, Leonardo, Opere, Ediz. Bibl. Vatican, 1916. The work on sound waves dates back to about 1500.Google Scholar
  13. [13]
    Ding, J., and D. Gidaspow, A Bubbling Fluidization Model using Kinetic Theory of Granular Flow, AIChEAJ, 36, 523–538 (1990).CrossRefGoogle Scholar
  14. [14]
    Drew, D., Mathematical Modeling of Two-Phase Flow, Ann. Rev. Fluid Mech., 15, 261–291 (1983).CrossRefGoogle Scholar
  15. [15]
    Foscolo, P.U., and L.G. Gibilaro, Fluid Dynamic Stability of Fluidized Suspensions: the Particle Bed Model, Chem. Eng. Sci., 42, 1489–1500 (1987).CrossRefGoogle Scholar
  16. [16]
    Foscolo, P.U., L.G. Gibilaro and S. Rapagna’, Infinitesimal and Finite Voidage Perturbations in the Compressible Particle Phase Description of a Fluidized Bed, AIChE Symp. Series, Fluidization and Fluid-Particle Systems, 1995.Google Scholar
  17. [17]
    Goldreich, P., and S.A. Tremaine, The Velocity Dispersion in Saturn’s Rings, Icarus, 34, 227–239 (1978).CrossRefGoogle Scholar
  18. [18]
    Haff, P.K., Grain Flow as a Fluid Mechanical Phenomenon, J. Fluid Mech., 134, 401–430 (1983).MATHCrossRefGoogle Scholar
  19. [19]
    Hugoniot, H., Mémoire sur la Propagation du Mouvement dans les Corps et spécialemnet dan les Gaz Parfaits, J. Ecole Polyt. 58, 1–17 (1888).Google Scholar
  20. [20]
    Hugoniot, H., Mémoire sur la Propagation du Mouvement dans un Fluide Indefini, J. Math. Pur. Appl., 3, 477–491; 4, 153–167 (1887).Google Scholar
  21. [21]
    Jackson, R., The Flow of Granular Materials and Aerated Granular Material, J. Rheol., 30, 907–930 (1986).CrossRefGoogle Scholar
  22. [22]
    Jean, R.H. and L.S. Fan, On the Model Equations of Gibilaro and Foscolo with Corrected Buoyancy Forces, Powder Techn., 62, 201–205 (1992).CrossRefGoogle Scholar
  23. [23]
    Jenkins, J.T. and S.B. Savage, A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic Spherical Particles, J. Fluid Mech., 130, 187–202 (1983).MATHCrossRefGoogle Scholar
  24. [24]
    Joseph, D.D., Lundgren, T.S., (with an Appendix by R. Jackson and D.A. Saville), Ensemble Averaged and Mixture Theory Equations for Incompressible Fluid-Particle Suspensions, Int. J. Multiphase Flow, 16, 35–42 (1990).MATHCrossRefGoogle Scholar
  25. [25]
    Laplace, P.S., “Oeuvres”, (Imprimerie Royale, Paris 1846). The work on the speed of sound dates back to 1816.Google Scholar
  26. [26]
    Lax, P.D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM, Philadelphia, 1973.MATHCrossRefGoogle Scholar
  27. [27]
    Lundgren, T.S., Slow Flow through Stationary Random Beds and Suspensions of Spheres, J. Fluid Mech., 51, 273–299 (1972).MATHCrossRefGoogle Scholar
  28. [28]
    Maddox, J., Towards Unequal Partition of Energy?,Nature, 374 (6517), 11, 1995.Google Scholar
  29. [29]
    Maxwell, J.C., On the Dynamical Theory of Gases, Phil. Trans. Roy. Soc. London, 157, 49–98 (1867).CrossRefGoogle Scholar
  30. [30]
    Mc Tigue, D.F., and J.T. Jenkins, Channel Flow of Concentrated Suspensions, in: Advances in Micromechanics of Granular Materials, H.H. Shen, M. Statake, M. Mehrabadi, C.S. Chang, C.S. Campbell Eds., Elsevier, Amsterdam, 1992.Google Scholar
  31. [31]
    Morse, P.M., and H. Feshbach, Methods of Theoretical Physics, McGraw Hill, New York, 1953.MATHGoogle Scholar
  32. [32]
    Mutsers, S.M.P., and K. Rietema, The Effect of Interparticle Forces on the Expansion of a Homogeneous Gas-Fluidized Bed, Powder Techn., 18, 239–248 (1977).CrossRefGoogle Scholar
  33. [33]
    Nayfeh, A.H., Perturbation Methods, J. Wiley, New York, 1973.Google Scholar
  34. [34]
    Newton, I., Philosophiae Naturalis Principia Mathematica, Streeter, London 1687.Google Scholar
  35. [35]
    Ocone, R., and G. Astarita, A Pseudo-Thermodynamic Theory of Granular Flow Rheology, J. Rheol., 37, 727–742 (1993).CrossRefGoogle Scholar
  36. [36]
    Ocone, R., and G. Astarita, On Waves of Particulate Phase Pressure in Granular Materials, J. Rheol., 38, 129–139 (1994).CrossRefGoogle Scholar
  37. [37]
    Ocone, R., and G. Astarita, Compression and Rarefaction Waves in Granular Flow, Powder Techn., 82, 231–237 (1995a).CrossRefGoogle Scholar
  38. [38]
    Ocone, R., and G. Astarita, Energy Partitions, Nature, 375 (6530), 254 (1995b).CrossRefGoogle Scholar
  39. [39]
    Ocone, R., and G. Astarita, Grain Inertia and Fluid Viscosity Dominated Granular Flow Rheology: A Thermodynamics Analysis, Rheol. Acta, 34, 323–328 (1995c).Google Scholar
  40. [40]
    Ogawa, S., Multitemperature Theory of Granular Materials, in Proc. of the US-Japan Symp. on Cont. Mech. and Statist. Appr. in Mech. of Granular Materials, S.C. Cowin and M. Satake Eds., Gukujatsu Bunken Fukyukai, 1978.Google Scholar
  41. [41]
    Rhee, K.H., R. Axis, and N.R. Amundson, First Order Partial Differential Equations, Prentice Hall, Englewood Cliffs, 1989.MATHGoogle Scholar
  42. [42]
    Richtmeyer, R.D., and K.W. Morton, Difference Methods for Initial Value Problems, Interscience, New York, 1967Google Scholar
  43. [43]
    Rosensweig, R.E., Magnetic Stabilization of the State of Uniform Fluidization, Ind. Eng. Chem. Fund., 18, 260–269 (1979).CrossRefGoogle Scholar
  44. [44]
    Savage, S.B., Streaming Motions in a Bed of Vibrationally Fluidized Dry Granular Material, J. Fluid Mech., 194, 457–478 (1988).CrossRefGoogle Scholar
  45. [45]
    Truesdell, C.A., Rational Thermodynamics, 2nd Ed., Springer-Verlag, Berlin, 1984.MATHCrossRefGoogle Scholar
  46. [46]
    Waterston, J.J., The Physics of Media that are Composed of Free and Perfectly Elastic Molecules in a State of Motion, Phil. Trans. Roy. Soc. London, A183, 1–79 (1893). Published posthumously, 48 years after its submission in 1845.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Tommaso Astarita
    • 1
  • Raffaella Ocone
    • 2
  • Gianni Astarita
    • 3
  1. 1.Department of Energetics, Thermofluodynamics and Environmental ControlUniversita’ di Napoli “Federico II”NapoliItaly
  2. 2.Department of Chemical EngineeringUniversity of NottinghamUniversity Park, NottinghamUK
  3. 3.Department of Materials and Production EngineeringUniversita’ di Napoli “Federico II”NapoliItaly

Personalised recommendations