A Gravimetric Geoid in Taiwan Area

  • Ruey-Gang Chang
  • Chia-Chyang Chang
  • Jenn-Taur Lee
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 104)


The paper describes the theoretical aspects of the gravimetric geoid. Stokes’ integral convolution approach reformulated for the higher-order reference field, OSU86F in this case, is used. In addition to the theoretical aspects, an example of the actual solution for Taiwan area is shown.


Global Position System Gravity Anomaly Geoidal Height Reference Ellipsoid Geoid Undulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ecker, E., and Mittermayer, E. (1969). Gravity corrections for the influence of the atmosphere, Boll. Geofisica Teor. Appl., 11, pp. 70–79.Google Scholar
  2. Engelis, T., Rapp, R.H., and Tscherning, C.C. (1984). The precise computation of geoid undulation differences with comparison the results obtained from the GPS, Geophys.Res. Leu. 1, No. 9, pp. 821–824.CrossRefGoogle Scholar
  3. Heiskanen, W. and Moritz, H. (1967). Physical geodesy,Freeman.Google Scholar
  4. IAG (1971). Geodetic reference system, Special Publication No. 3, Central Bureau of the IAG, Paris, France.Google Scholar
  5. Kassim, F.A. (1980). An evaluation of three techniques for the prediction of gravity in Canada, Dept. of Sur. Eng. Tech. Rep. 73, Univ. of New Brunswick, Fredericton.Google Scholar
  6. Lambert, W., and Darling, F.W. (1936). Tables for determining the form of the geoid and its indirect effect on the gravity, Special Publication No.199, p. 114, U.S. Coast and Geodetic Survey, U.S. Supt. of Doc. Washington, D.C.Google Scholar
  7. Lelgemann, D. (1970). Untersuchungen Zue Einir Genaueren Losung des Problem von Stokes, Sec.0 155, Dtsch.Geod.Komm., Munich, FRG.Google Scholar
  8. Marsh, J.G., and Chang, E.S. (1976). Detailed gravimetric geoid confirmation of sea surface topography detected by the Skylab S-193 altimeter in the Atlantic ocean, Bulletin Geodesique, 50, No. 3, pp. 291–299.CrossRefGoogle Scholar
  9. Mather, R.S. (1973). A Solution of the Geodetic Boundary Value Problem to Order e3, Goddard Space Flight Center Preprint X–592–73–11, Greenbelt, U.S.A.Google Scholar
  10. Molodenskij, M.S., Eremeev, V.F., and Yurkina, M.I. (1962). Methods for study of the external gravitational field and figure of the earth, Translated from Russian by the Israel Program for Scientific Translations for the Office of Technocal Service, U.S. Department of Commerce, Washington, D.C.Google Scholar
  11. Moritz, H. (1974). Presise gravimetric geodesy, Dept. of Geod. Sci. Rep. 213, Ohio State Univ., Columbus.Google Scholar
  12. Moritz, H. (1980). Advanced physical geodesy, Abacus, Kent, England.Google Scholar
  13. Rapp, R.H. (1980). A comparison as altimeter and gravimetric geoids in the Tonga Trench and Indian ocean areas, Bulletin Geodesique, 54, pp. 1149–163.CrossRefGoogle Scholar
  14. Rapp, R.H. (1981). The earth’s gravity to degree and order 180 using altimeter data, terrestrial gravity data, and other data, Dept. of Geod.Sci. Rep. 322, Ohio State Univ., Columbus.Google Scholar
  15. Rapp, R.H. (1983). The determination of geoid undulations and gravity anomalies from Seasat altimeter data, J. Geophys. Res., 88, No. C3, pp. 1552–1562.CrossRefGoogle Scholar
  16. Rapp, R.H. and J.Y. Cruz (1986). Spherical harmonic expansions of the earth’s Gravitational potential to degree 360 using30’ mean anomalies. Dept. of Geod. Sci. Rep. 376, Ohio State Univ., Columbus.Google Scholar
  17. Rapp, R.H., and Rummel, R. (1975). Methods for the computation of detailed geoid and their Accuracy, Dept. of Geod. Sci. Rep. 233, Ohio State Univ., Columbus.Google Scholar
  18. Vanicek, P. and John, S. (1983). Evaluation of geoid solutions for Canada using difference kinds od data, Presented at t he XVIII General Assembly, I nternational Union of Geodesy and Geophysics, Hamburg, FRG.Google Scholar
  19. Vanicek, P., Kleusberg, A., Chang, R.G., Fashir, H., Christou, N., Hofman, M., Kling, T., and Arsenault, T. (1987). The Canadian geoid, Dept. of Sur. Engi. Rep. 127, Univ. of New Brunswick, Fredericton.Google Scholar
  20. Vanicek, P. and Krakiwsky, E. (1982). Geodesy: The Concepts, North-Holland Publishing Company, Holland.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Ruey-Gang Chang
    • 1
  • Chia-Chyang Chang
    • 1
  • Jenn-Taur Lee
    • 1
  1. 1.Dept. of Surveying and Mapping EngineeringChung Cheng Institute of TechnologyTashi, TaoyuaTaiwan

Personalised recommendations