The Italian Gravimetric Geoid

  • B. Benciolini
  • A. Manzino
  • F. Sansò
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 104)


A new step of the Italian geoid has been almost completed. The geoid has been computed all over the Italian territory using a new gravity data base and a global model. The computation has been partly repeated using a digital height model too in order to separate the terrain effects; this job is still in development.

The data menagement and the computational activities are reported in this paper and the results are presented and discussed.


Global Model Gravity Anomaly Digital Terrain Model Geoid Undulation Orthometric Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Tscherning C.C., Rapp H.R. (1974): Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models.Google Scholar
  2. Reports n. 208. Dept. of Geodetic Science, The Ohio State University, Columbus.Google Scholar
  3. Tscherning C.C. (1976): Covariance expression for second and lower order derivatives of the anomalous potential. Report n. 255, Dept. of Geodetic Science, The Ohio State University, Columbus.Google Scholar
  4. Forsberg R., Tscherning C.C. (1981): The use of height data in gravity field approximation by collocation. Journal of Geophysical Research, vol. 86 n. B9, pp. 7843–7854.CrossRefGoogle Scholar
  5. Carrozzo M.T. et al. (1982): Data bases of mean height values and of gravity values. Proceedings of the 2nd International Symposium on the Geoid in Europe and Mediterranean Area, Roma.Google Scholar
  6. Sideris M. (1985): A fast Fourier transform for computing terrain corrections. Manuscripta Geodaetica n. 10.Google Scholar
  7. Barzaghi R. (1986): La stima del geoide in Italia. Ph.D. Thesis, Milano.Google Scholar
  8. Knudsen P. (1987): Estimation and modelling of the local empirical covariance function using gravity and satellite altimeter data. Bullettin Geodesique, n. 61, pp. 145–160.CrossRefGoogle Scholar
  9. Benciolini B., Manzino A. (1987): Italgeo ‘80: La preparazione dei dati, la stima delle funzioni di covarianza ed i primi risultati ottenuti. Atti del 6 Convegno del GNGTS-CNR, Roma.Google Scholar
  10. Gerstbach G. (1988): Precise Alpine geoid determination without digital terrain models. Bullettin Geodesique, n. 62, pp. 541–563.CrossRefGoogle Scholar
  11. Zomorrodian H. (1988): Regional geopotential model improvement for the Iranian geoid determination. Bullettin Geodesique, n. 62, pp. 125–141.CrossRefGoogle Scholar
  12. Benciolini B., Manzino A. (1989): The geoid computation: a fronteer between boundary value and inverse problems. II Hotine-Marussi Symposium on Mathematical Geodesy, Pisa, 1989.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • B. Benciolini
    • 1
  • A. Manzino
    • 2
  • F. Sansò
    • 2
  1. 1.Dip. IngegneriaUniversità di TrentoItaly
  2. 2.Istituto di TopografiaPolitecnico di MilanoItaly

Personalised recommendations